Device-to-device proximity service method based on reinforcement learning

The invention discloses a device-to-device proximity service method based on reinforcement learning. The method comprises steps that service request equipment transmits a service request signal, and the service request signal is transmitted to a mobile communication base station which cannot achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YUE WENYUAN, GUO DABO, GUO TIANHAO, ZHANG GANG, WANG QIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YUE WENYUAN
GUO DABO
GUO TIANHAO
ZHANG GANG
WANG QIAN
description The invention discloses a device-to-device proximity service method based on reinforcement learning. The method comprises steps that service request equipment transmits a service request signal, and the service request signal is transmitted to a mobile communication base station which cannot achieve the direct communication through proximity service providing equipment; the mobile communication base station scores and ranks the service providing devices with the service conditions according to the connection communication history of the service request device and all the service providing devices; the mobile communication base station selects a preset number of alternative service providing devices for the service request device according to the sorting result; when the service request device and the alternative service providing device move to be within the communication distance, communication is started, and services are provided; and if the two move beyond the communication distance, the service request e
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112272353A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112272353A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112272353A3</originalsourceid><addsrcrecordid>eNrjZPB0SS3LTE7VLcnXTQGzFAqK8isyczNLKhWKU4vAIrmpJRn5KQpJicWpKQr5eQpFqZl5aflFyam5qXklCjmpiUV5mXnpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDIyNzI2NTY0ZgYNQALQTUF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Device-to-device proximity service method based on reinforcement learning</title><source>esp@cenet</source><creator>YUE WENYUAN ; GUO DABO ; GUO TIANHAO ; ZHANG GANG ; WANG QIAN</creator><creatorcontrib>YUE WENYUAN ; GUO DABO ; GUO TIANHAO ; ZHANG GANG ; WANG QIAN</creatorcontrib><description>The invention discloses a device-to-device proximity service method based on reinforcement learning. The method comprises steps that service request equipment transmits a service request signal, and the service request signal is transmitted to a mobile communication base station which cannot achieve the direct communication through proximity service providing equipment; the mobile communication base station scores and ranks the service providing devices with the service conditions according to the connection communication history of the service request device and all the service providing devices; the mobile communication base station selects a preset number of alternative service providing devices for the service request device according to the sorting result; when the service request device and the alternative service providing device move to be within the communication distance, communication is started, and services are provided; and if the two move beyond the communication distance, the service request e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210126&amp;DB=EPODOC&amp;CC=CN&amp;NR=112272353A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210126&amp;DB=EPODOC&amp;CC=CN&amp;NR=112272353A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUE WENYUAN</creatorcontrib><creatorcontrib>GUO DABO</creatorcontrib><creatorcontrib>GUO TIANHAO</creatorcontrib><creatorcontrib>ZHANG GANG</creatorcontrib><creatorcontrib>WANG QIAN</creatorcontrib><title>Device-to-device proximity service method based on reinforcement learning</title><description>The invention discloses a device-to-device proximity service method based on reinforcement learning. The method comprises steps that service request equipment transmits a service request signal, and the service request signal is transmitted to a mobile communication base station which cannot achieve the direct communication through proximity service providing equipment; the mobile communication base station scores and ranks the service providing devices with the service conditions according to the connection communication history of the service request device and all the service providing devices; the mobile communication base station selects a preset number of alternative service providing devices for the service request device according to the sorting result; when the service request device and the alternative service providing device move to be within the communication distance, communication is started, and services are provided; and if the two move beyond the communication distance, the service request e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB0SS3LTE7VLcnXTQGzFAqK8isyczNLKhWKU4vAIrmpJRn5KQpJicWpKQr5eQpFqZl5aflFyam5qXklCjmpiUV5mXnpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDIyNzI2NTY0ZgYNQALQTUF</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>YUE WENYUAN</creator><creator>GUO DABO</creator><creator>GUO TIANHAO</creator><creator>ZHANG GANG</creator><creator>WANG QIAN</creator><scope>EVB</scope></search><sort><creationdate>20210126</creationdate><title>Device-to-device proximity service method based on reinforcement learning</title><author>YUE WENYUAN ; GUO DABO ; GUO TIANHAO ; ZHANG GANG ; WANG QIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112272353A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>YUE WENYUAN</creatorcontrib><creatorcontrib>GUO DABO</creatorcontrib><creatorcontrib>GUO TIANHAO</creatorcontrib><creatorcontrib>ZHANG GANG</creatorcontrib><creatorcontrib>WANG QIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUE WENYUAN</au><au>GUO DABO</au><au>GUO TIANHAO</au><au>ZHANG GANG</au><au>WANG QIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Device-to-device proximity service method based on reinforcement learning</title><date>2021-01-26</date><risdate>2021</risdate><abstract>The invention discloses a device-to-device proximity service method based on reinforcement learning. The method comprises steps that service request equipment transmits a service request signal, and the service request signal is transmitted to a mobile communication base station which cannot achieve the direct communication through proximity service providing equipment; the mobile communication base station scores and ranks the service providing devices with the service conditions according to the connection communication history of the service request device and all the service providing devices; the mobile communication base station selects a preset number of alternative service providing devices for the service request device according to the sorting result; when the service request device and the alternative service providing device move to be within the communication distance, communication is started, and services are provided; and if the two move beyond the communication distance, the service request e</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112272353A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
WIRELESS COMMUNICATIONS NETWORKS
title Device-to-device proximity service method based on reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUE%20WENYUAN&rft.date=2021-01-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112272353A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true