Liver CT image multi-lesion classification method based on sample generation and transfer learning
The invention discloses a liver CT image multi-lesion classification method based on sample generation and transfer learning. The method mainly solves the problem that an existing method is not high in liver multi-lesion detection performance. The implementation scheme is as follows: dividing a data...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU YINAN LUO ANLIN YANG YULIN CAO SIYING GOU SHUIPING ZHOU HAIBIN LIU HAOFENG |
description | The invention discloses a liver CT image multi-lesion classification method based on sample generation and transfer learning. The method mainly solves the problem that an existing method is not high in liver multi-lesion detection performance. The implementation scheme is as follows: dividing a data set; respectively constructing a liver organ segmentation network and a liver lesion detection network; based on the deep convolution generative adversarial network, constructing a liver cyst sample generation network and a liver hemangioma sample generation network, and respectively generating newliver cyst and liver hemangioma samples; constructing a liver lesion classification network; subjecting a liver CT image to be detected firstly to organ segmentation by using a liver organ segmentation network, then subjecting a segmentation result to lesion detection by using a liver lesion detection network, and finally classifying detected lesions by using a liver lesion classification network. According to the invent |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112241766A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112241766A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112241766A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAHPxIOof1gf00Cr1LEXxIJ56L9tkky4kaclG329EH-BpGBhmrcY7vyhB1wMHdATh6TNXnoTnCNqjCFvWmD8aKE-zgRGFDBQXDIsncBQpfQuMBnLCKLY8PWGKHN1WrSx6od2PG7W_XvruVtEyDyQL6jLIQ_eo66Y51qe2PR_-ad41Qz4C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Liver CT image multi-lesion classification method based on sample generation and transfer learning</title><source>esp@cenet</source><creator>XU YINAN ; LUO ANLIN ; YANG YULIN ; CAO SIYING ; GOU SHUIPING ; ZHOU HAIBIN ; LIU HAOFENG</creator><creatorcontrib>XU YINAN ; LUO ANLIN ; YANG YULIN ; CAO SIYING ; GOU SHUIPING ; ZHOU HAIBIN ; LIU HAOFENG</creatorcontrib><description>The invention discloses a liver CT image multi-lesion classification method based on sample generation and transfer learning. The method mainly solves the problem that an existing method is not high in liver multi-lesion detection performance. The implementation scheme is as follows: dividing a data set; respectively constructing a liver organ segmentation network and a liver lesion detection network; based on the deep convolution generative adversarial network, constructing a liver cyst sample generation network and a liver hemangioma sample generation network, and respectively generating newliver cyst and liver hemangioma samples; constructing a liver lesion classification network; subjecting a liver CT image to be detected firstly to organ segmentation by using a liver organ segmentation network, then subjecting a segmentation result to lesion detection by using a liver lesion detection network, and finally classifying detected lesions by using a liver lesion classification network. According to the invent</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210119&DB=EPODOC&CC=CN&NR=112241766A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210119&DB=EPODOC&CC=CN&NR=112241766A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU YINAN</creatorcontrib><creatorcontrib>LUO ANLIN</creatorcontrib><creatorcontrib>YANG YULIN</creatorcontrib><creatorcontrib>CAO SIYING</creatorcontrib><creatorcontrib>GOU SHUIPING</creatorcontrib><creatorcontrib>ZHOU HAIBIN</creatorcontrib><creatorcontrib>LIU HAOFENG</creatorcontrib><title>Liver CT image multi-lesion classification method based on sample generation and transfer learning</title><description>The invention discloses a liver CT image multi-lesion classification method based on sample generation and transfer learning. The method mainly solves the problem that an existing method is not high in liver multi-lesion detection performance. The implementation scheme is as follows: dividing a data set; respectively constructing a liver organ segmentation network and a liver lesion detection network; based on the deep convolution generative adversarial network, constructing a liver cyst sample generation network and a liver hemangioma sample generation network, and respectively generating newliver cyst and liver hemangioma samples; constructing a liver lesion classification network; subjecting a liver CT image to be detected firstly to organ segmentation by using a liver organ segmentation network, then subjecting a segmentation result to lesion detection by using a liver lesion detection network, and finally classifying detected lesions by using a liver lesion classification network. According to the invent</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQAHPxIOof1gf00Cr1LEXxIJ56L9tkky4kaclG329EH-BpGBhmrcY7vyhB1wMHdATh6TNXnoTnCNqjCFvWmD8aKE-zgRGFDBQXDIsncBQpfQuMBnLCKLY8PWGKHN1WrSx6od2PG7W_XvruVtEyDyQL6jLIQ_eo66Y51qe2PR_-ad41Qz4C</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>XU YINAN</creator><creator>LUO ANLIN</creator><creator>YANG YULIN</creator><creator>CAO SIYING</creator><creator>GOU SHUIPING</creator><creator>ZHOU HAIBIN</creator><creator>LIU HAOFENG</creator><scope>EVB</scope></search><sort><creationdate>20210119</creationdate><title>Liver CT image multi-lesion classification method based on sample generation and transfer learning</title><author>XU YINAN ; LUO ANLIN ; YANG YULIN ; CAO SIYING ; GOU SHUIPING ; ZHOU HAIBIN ; LIU HAOFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112241766A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU YINAN</creatorcontrib><creatorcontrib>LUO ANLIN</creatorcontrib><creatorcontrib>YANG YULIN</creatorcontrib><creatorcontrib>CAO SIYING</creatorcontrib><creatorcontrib>GOU SHUIPING</creatorcontrib><creatorcontrib>ZHOU HAIBIN</creatorcontrib><creatorcontrib>LIU HAOFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU YINAN</au><au>LUO ANLIN</au><au>YANG YULIN</au><au>CAO SIYING</au><au>GOU SHUIPING</au><au>ZHOU HAIBIN</au><au>LIU HAOFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Liver CT image multi-lesion classification method based on sample generation and transfer learning</title><date>2021-01-19</date><risdate>2021</risdate><abstract>The invention discloses a liver CT image multi-lesion classification method based on sample generation and transfer learning. The method mainly solves the problem that an existing method is not high in liver multi-lesion detection performance. The implementation scheme is as follows: dividing a data set; respectively constructing a liver organ segmentation network and a liver lesion detection network; based on the deep convolution generative adversarial network, constructing a liver cyst sample generation network and a liver hemangioma sample generation network, and respectively generating newliver cyst and liver hemangioma samples; constructing a liver lesion classification network; subjecting a liver CT image to be detected firstly to organ segmentation by using a liver organ segmentation network, then subjecting a segmentation result to lesion detection by using a liver lesion detection network, and finally classifying detected lesions by using a liver lesion classification network. According to the invent</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112241766A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Liver CT image multi-lesion classification method based on sample generation and transfer learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20YINAN&rft.date=2021-01-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112241766A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |