Post-layout wiring violation prediction method based on deep learning and readable storage medium

The invention discloses a post-layout wiring violation prediction method based on deep learning and a readable storage medium, and the method comprises the steps: segmenting first layout information according to preset windows, so as to obtain first feature information corresponding to each preset w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI NAN, ZHANG XI, FAN QINCHUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI NAN
ZHANG XI
FAN QINCHUN
description The invention discloses a post-layout wiring violation prediction method based on deep learning and a readable storage medium, and the method comprises the steps: segmenting first layout information according to preset windows, so as to obtain first feature information corresponding to each preset window; obtaining a first feature image corresponding to each piece of first feature information according to the first feature information; obtaining a first five-dimensional tensor image according to all the first feature images corresponding to the same preset window; obtaining a corresponding first design rule violation image according to a preset window; obtaining a trained first network model; obtaining a first training model based on the trained first network model; obtaining a second training model; obtaining a final training model; and inputting the to-be-predicted data into the final training model to obtain a prediction result. According to the method, the layout can be adjusted intime under the condition
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112233115A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112233115A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112233115A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbtxIeodxgN0kRYPIEVxJS7cl2nnWwNpJiSp4u2t4gFcvf_gv2XBF025dPzSKdPTRusHelh1nK16ChFi--8cke8q1HGC0OwCBHLg6D8Je6EIFu4cKGWNPGBOxE7juljc2CVsflwV2-Ph2pxKBG2RAvfwyG1zNqaq6tqY3b7-5_MGPw492Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Post-layout wiring violation prediction method based on deep learning and readable storage medium</title><source>esp@cenet</source><creator>LI NAN ; ZHANG XI ; FAN QINCHUN</creator><creatorcontrib>LI NAN ; ZHANG XI ; FAN QINCHUN</creatorcontrib><description>The invention discloses a post-layout wiring violation prediction method based on deep learning and a readable storage medium, and the method comprises the steps: segmenting first layout information according to preset windows, so as to obtain first feature information corresponding to each preset window; obtaining a first feature image corresponding to each piece of first feature information according to the first feature information; obtaining a first five-dimensional tensor image according to all the first feature images corresponding to the same preset window; obtaining a corresponding first design rule violation image according to a preset window; obtaining a trained first network model; obtaining a first training model based on the trained first network model; obtaining a second training model; obtaining a final training model; and inputting the to-be-predicted data into the final training model to obtain a prediction result. According to the method, the layout can be adjusted intime under the condition</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210115&amp;DB=EPODOC&amp;CC=CN&amp;NR=112233115A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210115&amp;DB=EPODOC&amp;CC=CN&amp;NR=112233115A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI NAN</creatorcontrib><creatorcontrib>ZHANG XI</creatorcontrib><creatorcontrib>FAN QINCHUN</creatorcontrib><title>Post-layout wiring violation prediction method based on deep learning and readable storage medium</title><description>The invention discloses a post-layout wiring violation prediction method based on deep learning and a readable storage medium, and the method comprises the steps: segmenting first layout information according to preset windows, so as to obtain first feature information corresponding to each preset window; obtaining a first feature image corresponding to each piece of first feature information according to the first feature information; obtaining a first five-dimensional tensor image according to all the first feature images corresponding to the same preset window; obtaining a corresponding first design rule violation image according to a preset window; obtaining a trained first network model; obtaining a first training model based on the trained first network model; obtaining a second training model; obtaining a final training model; and inputting the to-be-predicted data into the final training model to obtain a prediction result. According to the method, the layout can be adjusted intime under the condition</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbtxIeodxgN0kRYPIEVxJS7cl2nnWwNpJiSp4u2t4gFcvf_gv2XBF025dPzSKdPTRusHelh1nK16ChFi--8cke8q1HGC0OwCBHLg6D8Je6EIFu4cKGWNPGBOxE7juljc2CVsflwV2-Ph2pxKBG2RAvfwyG1zNqaq6tqY3b7-5_MGPw492Q</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>LI NAN</creator><creator>ZHANG XI</creator><creator>FAN QINCHUN</creator><scope>EVB</scope></search><sort><creationdate>20210115</creationdate><title>Post-layout wiring violation prediction method based on deep learning and readable storage medium</title><author>LI NAN ; ZHANG XI ; FAN QINCHUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112233115A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI NAN</creatorcontrib><creatorcontrib>ZHANG XI</creatorcontrib><creatorcontrib>FAN QINCHUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI NAN</au><au>ZHANG XI</au><au>FAN QINCHUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Post-layout wiring violation prediction method based on deep learning and readable storage medium</title><date>2021-01-15</date><risdate>2021</risdate><abstract>The invention discloses a post-layout wiring violation prediction method based on deep learning and a readable storage medium, and the method comprises the steps: segmenting first layout information according to preset windows, so as to obtain first feature information corresponding to each preset window; obtaining a first feature image corresponding to each piece of first feature information according to the first feature information; obtaining a first five-dimensional tensor image according to all the first feature images corresponding to the same preset window; obtaining a corresponding first design rule violation image according to a preset window; obtaining a trained first network model; obtaining a first training model based on the trained first network model; obtaining a second training model; obtaining a final training model; and inputting the to-be-predicted data into the final training model to obtain a prediction result. According to the method, the layout can be adjusted intime under the condition</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112233115A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Post-layout wiring violation prediction method based on deep learning and readable storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20NAN&rft.date=2021-01-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112233115A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true