Automatic classification method and system for frosted pulmonary nodules

The invention discloses an automatic classification method and system for frosted pulmonary nodules, and the method mainly comprises the following steps: processing and analyzing a chest CT image through an image processing method, feature engineering and a machine learning technology, effectively d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG NINGMIN, QIN ZENGCHANG, WAN TAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG NINGMIN
QIN ZENGCHANG
WAN TAO
description The invention discloses an automatic classification method and system for frosted pulmonary nodules, and the method mainly comprises the following steps: processing and analyzing a chest CT image through an image processing method, feature engineering and a machine learning technology, effectively distinguishing frosted pulmonary nodules representing lung micro-invasive adenocarcinoma and invasiveadenocarcinoma, and carrying out the quantitative evaluation of a classification effect. The method effectively fuses various image features of pulmonary nodules reflecting iconographic characterization, can realize automatic classification of frosted pulmonary nodules characterizing lung micro-invasive adenocarcinoma and invasive adenocarcinoma, provides auxiliary information for doctors, helpsdoctors to perform quantitative analysis, and improves the working efficiency. In addition, clinical guidance significance can be provided for feasibility of the frosted pulmonary nodule classification method through a numeric
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112215799A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112215799A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112215799A3</originalsourceid><addsrcrecordid>eNqNirEKwjAQQLM4iPoP5wd0SEWkYymWTk7u5UguGEhyIZcM_Xs7-AFO7z14R7WMrXLE6g2YgCLeebMXJ4hUP2wBkwXZpFIExwVc4d0t5BYiJywbJLYtkJzVwWEQuvx4Utf5-Z6WjjKvJBkNJarr9NK67_X9MQzj7Z_nCwbeNSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic classification method and system for frosted pulmonary nodules</title><source>esp@cenet</source><creator>ZHANG NINGMIN ; QIN ZENGCHANG ; WAN TAO</creator><creatorcontrib>ZHANG NINGMIN ; QIN ZENGCHANG ; WAN TAO</creatorcontrib><description>The invention discloses an automatic classification method and system for frosted pulmonary nodules, and the method mainly comprises the following steps: processing and analyzing a chest CT image through an image processing method, feature engineering and a machine learning technology, effectively distinguishing frosted pulmonary nodules representing lung micro-invasive adenocarcinoma and invasiveadenocarcinoma, and carrying out the quantitative evaluation of a classification effect. The method effectively fuses various image features of pulmonary nodules reflecting iconographic characterization, can realize automatic classification of frosted pulmonary nodules characterizing lung micro-invasive adenocarcinoma and invasive adenocarcinoma, provides auxiliary information for doctors, helpsdoctors to perform quantitative analysis, and improves the working efficiency. In addition, clinical guidance significance can be provided for feasibility of the frosted pulmonary nodule classification method through a numeric</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210112&amp;DB=EPODOC&amp;CC=CN&amp;NR=112215799A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210112&amp;DB=EPODOC&amp;CC=CN&amp;NR=112215799A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG NINGMIN</creatorcontrib><creatorcontrib>QIN ZENGCHANG</creatorcontrib><creatorcontrib>WAN TAO</creatorcontrib><title>Automatic classification method and system for frosted pulmonary nodules</title><description>The invention discloses an automatic classification method and system for frosted pulmonary nodules, and the method mainly comprises the following steps: processing and analyzing a chest CT image through an image processing method, feature engineering and a machine learning technology, effectively distinguishing frosted pulmonary nodules representing lung micro-invasive adenocarcinoma and invasiveadenocarcinoma, and carrying out the quantitative evaluation of a classification effect. The method effectively fuses various image features of pulmonary nodules reflecting iconographic characterization, can realize automatic classification of frosted pulmonary nodules characterizing lung micro-invasive adenocarcinoma and invasive adenocarcinoma, provides auxiliary information for doctors, helpsdoctors to perform quantitative analysis, and improves the working efficiency. In addition, clinical guidance significance can be provided for feasibility of the frosted pulmonary nodule classification method through a numeric</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAQQLM4iPoP5wd0SEWkYymWTk7u5UguGEhyIZcM_Xs7-AFO7z14R7WMrXLE6g2YgCLeebMXJ4hUP2wBkwXZpFIExwVc4d0t5BYiJywbJLYtkJzVwWEQuvx4Utf5-Z6WjjKvJBkNJarr9NK67_X9MQzj7Z_nCwbeNSQ</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>ZHANG NINGMIN</creator><creator>QIN ZENGCHANG</creator><creator>WAN TAO</creator><scope>EVB</scope></search><sort><creationdate>20210112</creationdate><title>Automatic classification method and system for frosted pulmonary nodules</title><author>ZHANG NINGMIN ; QIN ZENGCHANG ; WAN TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112215799A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG NINGMIN</creatorcontrib><creatorcontrib>QIN ZENGCHANG</creatorcontrib><creatorcontrib>WAN TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG NINGMIN</au><au>QIN ZENGCHANG</au><au>WAN TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic classification method and system for frosted pulmonary nodules</title><date>2021-01-12</date><risdate>2021</risdate><abstract>The invention discloses an automatic classification method and system for frosted pulmonary nodules, and the method mainly comprises the following steps: processing and analyzing a chest CT image through an image processing method, feature engineering and a machine learning technology, effectively distinguishing frosted pulmonary nodules representing lung micro-invasive adenocarcinoma and invasiveadenocarcinoma, and carrying out the quantitative evaluation of a classification effect. The method effectively fuses various image features of pulmonary nodules reflecting iconographic characterization, can realize automatic classification of frosted pulmonary nodules characterizing lung micro-invasive adenocarcinoma and invasive adenocarcinoma, provides auxiliary information for doctors, helpsdoctors to perform quantitative analysis, and improves the working efficiency. In addition, clinical guidance significance can be provided for feasibility of the frosted pulmonary nodule classification method through a numeric</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112215799A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Automatic classification method and system for frosted pulmonary nodules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20NINGMIN&rft.date=2021-01-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112215799A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true