Power load clustering analysis method based on correlation coefficient improved K-means

The invention discloses a power load clustering analysis method based on correlation coefficient improved K-means in the technical field of power load clustering analysis, and the method comprises thesteps: preprocessing load data through wavelet transformation under the condition that the power loa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU DINGHAO, ZHOU JINGJING, DAI HAORENG, WANG SIWEI, LI JIAO, XIANG FEI, ZHONG JIAYONG, WU GAOXIANG, LYU XIAOHONG, TIAN PENG, PENG WENXIN, LI ZHE, CHEN TAO, LAI XIANGPING, LI WEI, CUI HONGBO, LIU AI, LI JUNJIE, XIE TAO, ZHANG LIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU DINGHAO
ZHOU JINGJING
DAI HAORENG
WANG SIWEI
LI JIAO
XIANG FEI
ZHONG JIAYONG
WU GAOXIANG
LYU XIAOHONG
TIAN PENG
PENG WENXIN
LI ZHE
CHEN TAO
LAI XIANGPING
LI WEI
CUI HONGBO
LIU AI
LI JUNJIE
XIE TAO
ZHANG LIN
description The invention discloses a power load clustering analysis method based on correlation coefficient improved K-means in the technical field of power load clustering analysis, and the method comprises thesteps: preprocessing load data through wavelet transformation under the condition that the power load data often contains an abnormal value; therefore, obviously wrong values and smooth data in the load data are eliminated, and meanwhile, dimensionality reduction is performed on the data by adopting a principal component analysis method, so that the calculation complexity during clustering is reduced, and the clustering efficiency is improved; clustering analysis on the power load data is facilitated, information such as power consumption and power utilization rules of users can be accuratelyobtained through analysis, and convenience is brought to a power distribution department to reasonably distribute electric energy in the future, so that the purposes of improving the working efficiency of enterprises and savi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112215490A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112215490A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112215490A3</originalsourceid><addsrcrecordid>eNqNyjEKAjEQRuFtLES9w3iABbNqYSmLIghiIVguY_aPBrKZJRMVb6-IB7B6r_iGxfkoTyQKwi3ZcNeM5OOVOHJ4qVfqkG_S0oUVLUkkKykhcPbfh3PeesRMvuuTPD5mX3bgqONi4DgoJr-Oiul2c6p3JXppoD1bROSmPhhTVWa5WM3W83_MG42KOjE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power load clustering analysis method based on correlation coefficient improved K-means</title><source>esp@cenet</source><creator>LIU DINGHAO ; ZHOU JINGJING ; DAI HAORENG ; WANG SIWEI ; LI JIAO ; XIANG FEI ; ZHONG JIAYONG ; WU GAOXIANG ; LYU XIAOHONG ; TIAN PENG ; PENG WENXIN ; LI ZHE ; CHEN TAO ; LAI XIANGPING ; LI WEI ; CUI HONGBO ; LIU AI ; LI JUNJIE ; XIE TAO ; ZHANG LIN</creator><creatorcontrib>LIU DINGHAO ; ZHOU JINGJING ; DAI HAORENG ; WANG SIWEI ; LI JIAO ; XIANG FEI ; ZHONG JIAYONG ; WU GAOXIANG ; LYU XIAOHONG ; TIAN PENG ; PENG WENXIN ; LI ZHE ; CHEN TAO ; LAI XIANGPING ; LI WEI ; CUI HONGBO ; LIU AI ; LI JUNJIE ; XIE TAO ; ZHANG LIN</creatorcontrib><description>The invention discloses a power load clustering analysis method based on correlation coefficient improved K-means in the technical field of power load clustering analysis, and the method comprises thesteps: preprocessing load data through wavelet transformation under the condition that the power load data often contains an abnormal value; therefore, obviously wrong values and smooth data in the load data are eliminated, and meanwhile, dimensionality reduction is performed on the data by adopting a principal component analysis method, so that the calculation complexity during clustering is reduced, and the clustering efficiency is improved; clustering analysis on the power load data is facilitated, information such as power consumption and power utilization rules of users can be accuratelyobtained through analysis, and convenience is brought to a power distribution department to reasonably distribute electric energy in the future, so that the purposes of improving the working efficiency of enterprises and savi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210112&amp;DB=EPODOC&amp;CC=CN&amp;NR=112215490A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210112&amp;DB=EPODOC&amp;CC=CN&amp;NR=112215490A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU DINGHAO</creatorcontrib><creatorcontrib>ZHOU JINGJING</creatorcontrib><creatorcontrib>DAI HAORENG</creatorcontrib><creatorcontrib>WANG SIWEI</creatorcontrib><creatorcontrib>LI JIAO</creatorcontrib><creatorcontrib>XIANG FEI</creatorcontrib><creatorcontrib>ZHONG JIAYONG</creatorcontrib><creatorcontrib>WU GAOXIANG</creatorcontrib><creatorcontrib>LYU XIAOHONG</creatorcontrib><creatorcontrib>TIAN PENG</creatorcontrib><creatorcontrib>PENG WENXIN</creatorcontrib><creatorcontrib>LI ZHE</creatorcontrib><creatorcontrib>CHEN TAO</creatorcontrib><creatorcontrib>LAI XIANGPING</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><creatorcontrib>CUI HONGBO</creatorcontrib><creatorcontrib>LIU AI</creatorcontrib><creatorcontrib>LI JUNJIE</creatorcontrib><creatorcontrib>XIE TAO</creatorcontrib><creatorcontrib>ZHANG LIN</creatorcontrib><title>Power load clustering analysis method based on correlation coefficient improved K-means</title><description>The invention discloses a power load clustering analysis method based on correlation coefficient improved K-means in the technical field of power load clustering analysis, and the method comprises thesteps: preprocessing load data through wavelet transformation under the condition that the power load data often contains an abnormal value; therefore, obviously wrong values and smooth data in the load data are eliminated, and meanwhile, dimensionality reduction is performed on the data by adopting a principal component analysis method, so that the calculation complexity during clustering is reduced, and the clustering efficiency is improved; clustering analysis on the power load data is facilitated, information such as power consumption and power utilization rules of users can be accuratelyobtained through analysis, and convenience is brought to a power distribution department to reasonably distribute electric energy in the future, so that the purposes of improving the working efficiency of enterprises and savi</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKAjEQRuFtLES9w3iABbNqYSmLIghiIVguY_aPBrKZJRMVb6-IB7B6r_iGxfkoTyQKwi3ZcNeM5OOVOHJ4qVfqkG_S0oUVLUkkKykhcPbfh3PeesRMvuuTPD5mX3bgqONi4DgoJr-Oiul2c6p3JXppoD1bROSmPhhTVWa5WM3W83_MG42KOjE</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>LIU DINGHAO</creator><creator>ZHOU JINGJING</creator><creator>DAI HAORENG</creator><creator>WANG SIWEI</creator><creator>LI JIAO</creator><creator>XIANG FEI</creator><creator>ZHONG JIAYONG</creator><creator>WU GAOXIANG</creator><creator>LYU XIAOHONG</creator><creator>TIAN PENG</creator><creator>PENG WENXIN</creator><creator>LI ZHE</creator><creator>CHEN TAO</creator><creator>LAI XIANGPING</creator><creator>LI WEI</creator><creator>CUI HONGBO</creator><creator>LIU AI</creator><creator>LI JUNJIE</creator><creator>XIE TAO</creator><creator>ZHANG LIN</creator><scope>EVB</scope></search><sort><creationdate>20210112</creationdate><title>Power load clustering analysis method based on correlation coefficient improved K-means</title><author>LIU DINGHAO ; ZHOU JINGJING ; DAI HAORENG ; WANG SIWEI ; LI JIAO ; XIANG FEI ; ZHONG JIAYONG ; WU GAOXIANG ; LYU XIAOHONG ; TIAN PENG ; PENG WENXIN ; LI ZHE ; CHEN TAO ; LAI XIANGPING ; LI WEI ; CUI HONGBO ; LIU AI ; LI JUNJIE ; XIE TAO ; ZHANG LIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112215490A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU DINGHAO</creatorcontrib><creatorcontrib>ZHOU JINGJING</creatorcontrib><creatorcontrib>DAI HAORENG</creatorcontrib><creatorcontrib>WANG SIWEI</creatorcontrib><creatorcontrib>LI JIAO</creatorcontrib><creatorcontrib>XIANG FEI</creatorcontrib><creatorcontrib>ZHONG JIAYONG</creatorcontrib><creatorcontrib>WU GAOXIANG</creatorcontrib><creatorcontrib>LYU XIAOHONG</creatorcontrib><creatorcontrib>TIAN PENG</creatorcontrib><creatorcontrib>PENG WENXIN</creatorcontrib><creatorcontrib>LI ZHE</creatorcontrib><creatorcontrib>CHEN TAO</creatorcontrib><creatorcontrib>LAI XIANGPING</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><creatorcontrib>CUI HONGBO</creatorcontrib><creatorcontrib>LIU AI</creatorcontrib><creatorcontrib>LI JUNJIE</creatorcontrib><creatorcontrib>XIE TAO</creatorcontrib><creatorcontrib>ZHANG LIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU DINGHAO</au><au>ZHOU JINGJING</au><au>DAI HAORENG</au><au>WANG SIWEI</au><au>LI JIAO</au><au>XIANG FEI</au><au>ZHONG JIAYONG</au><au>WU GAOXIANG</au><au>LYU XIAOHONG</au><au>TIAN PENG</au><au>PENG WENXIN</au><au>LI ZHE</au><au>CHEN TAO</au><au>LAI XIANGPING</au><au>LI WEI</au><au>CUI HONGBO</au><au>LIU AI</au><au>LI JUNJIE</au><au>XIE TAO</au><au>ZHANG LIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power load clustering analysis method based on correlation coefficient improved K-means</title><date>2021-01-12</date><risdate>2021</risdate><abstract>The invention discloses a power load clustering analysis method based on correlation coefficient improved K-means in the technical field of power load clustering analysis, and the method comprises thesteps: preprocessing load data through wavelet transformation under the condition that the power load data often contains an abnormal value; therefore, obviously wrong values and smooth data in the load data are eliminated, and meanwhile, dimensionality reduction is performed on the data by adopting a principal component analysis method, so that the calculation complexity during clustering is reduced, and the clustering efficiency is improved; clustering analysis on the power load data is facilitated, information such as power consumption and power utilization rules of users can be accuratelyobtained through analysis, and convenience is brought to a power distribution department to reasonably distribute electric energy in the future, so that the purposes of improving the working efficiency of enterprises and savi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112215490A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power load clustering analysis method based on correlation coefficient improved K-means
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20DINGHAO&rft.date=2021-01-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112215490A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true