Motor fault diagnosis method based on non-convex non-smooth optimization and graph model

The invention discloses a motor fault diagnosis method based on non-convex non-smooth optimization and a graph model, and the method comprises the steps: extracting the incidence relation of differenthigh-dimensional signals through the non-convex non-smooth optimization, obtaining the implicit stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GONG XIUZHONG, WANG YULONG, DONG HENGZHANG, NI YANG, YU KAI, ZHANG SHILIN, SUN JIE, WANG ZHE, YAN FENG, LIU BAONAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GONG XIUZHONG
WANG YULONG
DONG HENGZHANG
NI YANG
YU KAI
ZHANG SHILIN
SUN JIE
WANG ZHE
YAN FENG
LIU BAONAN
description The invention discloses a motor fault diagnosis method based on non-convex non-smooth optimization and a graph model, and the method comprises the steps: extracting the incidence relation of differenthigh-dimensional signals through the non-convex non-smooth optimization, obtaining the implicit state of the high-dimensional signals and a corresponding inverse covariance matrix by solving an optimization problem, building the graph model corresponding to a motor signal, and finally, comparing the real-time inverse covariance matrix and the historical inverse covariance online to judge whetherthe motor is in a fault, excavating the invisible fault of the motor in the high-dimensional time-varying signal through the history under the condition of no calibration, identifying the motor faultin advance, and therefore, the reliability of motor online fault diagnosis is improved to the maximum extent. 本发明公开了一种基于非凸非光滑优化和图模型的电机故障诊断方法,通过非凸非光滑优化提取不同高维信号的关联关系,通过求解优化问题得到高维信号的隐状态以及对应的逆协方差矩阵,建立电机信号对应的图模型,最终将实时的逆协方差矩阵和历史的逆协方差
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112180251A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112180251A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112180251A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w_kABVMRXKUoLjo5uJWzuTaB5C40p4hPr4gP4PT_wzc115OojNDjPSq4gANLCQUSqRcHNyzkQBhYuOqEH_T8bkki6kGyhhReqOFDkB0MI2YPSRzFuZn0GAstfp2Z5WF_aY4VZWmpZOyISdvmbG1tt6t6Y3frf8wbup46bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Motor fault diagnosis method based on non-convex non-smooth optimization and graph model</title><source>esp@cenet</source><creator>GONG XIUZHONG ; WANG YULONG ; DONG HENGZHANG ; NI YANG ; YU KAI ; ZHANG SHILIN ; SUN JIE ; WANG ZHE ; YAN FENG ; LIU BAONAN</creator><creatorcontrib>GONG XIUZHONG ; WANG YULONG ; DONG HENGZHANG ; NI YANG ; YU KAI ; ZHANG SHILIN ; SUN JIE ; WANG ZHE ; YAN FENG ; LIU BAONAN</creatorcontrib><description>The invention discloses a motor fault diagnosis method based on non-convex non-smooth optimization and a graph model, and the method comprises the steps: extracting the incidence relation of differenthigh-dimensional signals through the non-convex non-smooth optimization, obtaining the implicit state of the high-dimensional signals and a corresponding inverse covariance matrix by solving an optimization problem, building the graph model corresponding to a motor signal, and finally, comparing the real-time inverse covariance matrix and the historical inverse covariance online to judge whetherthe motor is in a fault, excavating the invisible fault of the motor in the high-dimensional time-varying signal through the history under the condition of no calibration, identifying the motor faultin advance, and therefore, the reliability of motor online fault diagnosis is improved to the maximum extent. 本发明公开了一种基于非凸非光滑优化和图模型的电机故障诊断方法,通过非凸非光滑优化提取不同高维信号的关联关系,通过求解优化问题得到高维信号的隐状态以及对应的逆协方差矩阵,建立电机信号对应的图模型,最终将实时的逆协方差矩阵和历史的逆协方差</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210105&amp;DB=EPODOC&amp;CC=CN&amp;NR=112180251A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210105&amp;DB=EPODOC&amp;CC=CN&amp;NR=112180251A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GONG XIUZHONG</creatorcontrib><creatorcontrib>WANG YULONG</creatorcontrib><creatorcontrib>DONG HENGZHANG</creatorcontrib><creatorcontrib>NI YANG</creatorcontrib><creatorcontrib>YU KAI</creatorcontrib><creatorcontrib>ZHANG SHILIN</creatorcontrib><creatorcontrib>SUN JIE</creatorcontrib><creatorcontrib>WANG ZHE</creatorcontrib><creatorcontrib>YAN FENG</creatorcontrib><creatorcontrib>LIU BAONAN</creatorcontrib><title>Motor fault diagnosis method based on non-convex non-smooth optimization and graph model</title><description>The invention discloses a motor fault diagnosis method based on non-convex non-smooth optimization and a graph model, and the method comprises the steps: extracting the incidence relation of differenthigh-dimensional signals through the non-convex non-smooth optimization, obtaining the implicit state of the high-dimensional signals and a corresponding inverse covariance matrix by solving an optimization problem, building the graph model corresponding to a motor signal, and finally, comparing the real-time inverse covariance matrix and the historical inverse covariance online to judge whetherthe motor is in a fault, excavating the invisible fault of the motor in the high-dimensional time-varying signal through the history under the condition of no calibration, identifying the motor faultin advance, and therefore, the reliability of motor online fault diagnosis is improved to the maximum extent. 本发明公开了一种基于非凸非光滑优化和图模型的电机故障诊断方法,通过非凸非光滑优化提取不同高维信号的关联关系,通过求解优化问题得到高维信号的隐状态以及对应的逆协方差矩阵,建立电机信号对应的图模型,最终将实时的逆协方差矩阵和历史的逆协方差</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w_kABVMRXKUoLjo5uJWzuTaB5C40p4hPr4gP4PT_wzc115OojNDjPSq4gANLCQUSqRcHNyzkQBhYuOqEH_T8bkki6kGyhhReqOFDkB0MI2YPSRzFuZn0GAstfp2Z5WF_aY4VZWmpZOyISdvmbG1tt6t6Y3frf8wbup46bg</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>GONG XIUZHONG</creator><creator>WANG YULONG</creator><creator>DONG HENGZHANG</creator><creator>NI YANG</creator><creator>YU KAI</creator><creator>ZHANG SHILIN</creator><creator>SUN JIE</creator><creator>WANG ZHE</creator><creator>YAN FENG</creator><creator>LIU BAONAN</creator><scope>EVB</scope></search><sort><creationdate>20210105</creationdate><title>Motor fault diagnosis method based on non-convex non-smooth optimization and graph model</title><author>GONG XIUZHONG ; WANG YULONG ; DONG HENGZHANG ; NI YANG ; YU KAI ; ZHANG SHILIN ; SUN JIE ; WANG ZHE ; YAN FENG ; LIU BAONAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112180251A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>GONG XIUZHONG</creatorcontrib><creatorcontrib>WANG YULONG</creatorcontrib><creatorcontrib>DONG HENGZHANG</creatorcontrib><creatorcontrib>NI YANG</creatorcontrib><creatorcontrib>YU KAI</creatorcontrib><creatorcontrib>ZHANG SHILIN</creatorcontrib><creatorcontrib>SUN JIE</creatorcontrib><creatorcontrib>WANG ZHE</creatorcontrib><creatorcontrib>YAN FENG</creatorcontrib><creatorcontrib>LIU BAONAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GONG XIUZHONG</au><au>WANG YULONG</au><au>DONG HENGZHANG</au><au>NI YANG</au><au>YU KAI</au><au>ZHANG SHILIN</au><au>SUN JIE</au><au>WANG ZHE</au><au>YAN FENG</au><au>LIU BAONAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Motor fault diagnosis method based on non-convex non-smooth optimization and graph model</title><date>2021-01-05</date><risdate>2021</risdate><abstract>The invention discloses a motor fault diagnosis method based on non-convex non-smooth optimization and a graph model, and the method comprises the steps: extracting the incidence relation of differenthigh-dimensional signals through the non-convex non-smooth optimization, obtaining the implicit state of the high-dimensional signals and a corresponding inverse covariance matrix by solving an optimization problem, building the graph model corresponding to a motor signal, and finally, comparing the real-time inverse covariance matrix and the historical inverse covariance online to judge whetherthe motor is in a fault, excavating the invisible fault of the motor in the high-dimensional time-varying signal through the history under the condition of no calibration, identifying the motor faultin advance, and therefore, the reliability of motor online fault diagnosis is improved to the maximum extent. 本发明公开了一种基于非凸非光滑优化和图模型的电机故障诊断方法,通过非凸非光滑优化提取不同高维信号的关联关系,通过求解优化问题得到高维信号的隐状态以及对应的逆协方差矩阵,建立电机信号对应的图模型,最终将实时的逆协方差矩阵和历史的逆协方差</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112180251A
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Motor fault diagnosis method based on non-convex non-smooth optimization and graph model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GONG%20XIUZHONG&rft.date=2021-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112180251A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true