Complex background PCB mark point image detection method based on Mini ARU-Net network

The invention discloses a complex background printed circuit board mark point image detection method based on a Mini ARU-Net network. The method comprises the following steps: 1) collecting a printedcircuit board image, performing gray processing, extracting a mark point area as a mark point image,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU JINGLI, YI GUODONG, FENG YANWU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU JINGLI
YI GUODONG
FENG YANWU
description The invention discloses a complex background printed circuit board mark point image detection method based on a Mini ARU-Net network. The method comprises the following steps: 1) collecting a printedcircuit board image, performing gray processing, extracting a mark point area as a mark point image, and adding a binary image of the area where a mark point is located as a segmentation label image;2) constructing a Mini ARUNet network, and inputting a mark point image for training and a segmentation label graph thereof into the Mini ARUNet network for training; 3) inputting a to-be-detected mark point image into the Mini ARUNet network obtained by training in the step 2) to perform mark point segmentation to obtain a segmentation result graph; and 4) solving the centroid of the area where the mark point is located according to the segmentation result graph, taking the centroid as the coordinate of the mark point, solving the average distance from the centroid to the edge of the area where the mark point is locat
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112132798A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112132798A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112132798A3</originalsourceid><addsrcrecordid>eNqNizEOwiAUQFkcjHqH7wE60A7qWInGxcYYdW0QvpVQ-AQwenwZPIDTy0vem7KbIBdG_MBdKjtEenkNJ7EFJ6OFQMZnME4OCBozqmzIg8P8JF2GhBqKH4030J6vVYcZPOY3RTtnk4ccEy5-nLHlfncRhwoD9ZiCVFjKXnSc17ypV5t12_zTfAGGdzhV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Complex background PCB mark point image detection method based on Mini ARU-Net network</title><source>esp@cenet</source><creator>WU JINGLI ; YI GUODONG ; FENG YANWU</creator><creatorcontrib>WU JINGLI ; YI GUODONG ; FENG YANWU</creatorcontrib><description>The invention discloses a complex background printed circuit board mark point image detection method based on a Mini ARU-Net network. The method comprises the following steps: 1) collecting a printedcircuit board image, performing gray processing, extracting a mark point area as a mark point image, and adding a binary image of the area where a mark point is located as a segmentation label image;2) constructing a Mini ARUNet network, and inputting a mark point image for training and a segmentation label graph thereof into the Mini ARUNet network for training; 3) inputting a to-be-detected mark point image into the Mini ARUNet network obtained by training in the step 2) to perform mark point segmentation to obtain a segmentation result graph; and 4) solving the centroid of the area where the mark point is located according to the segmentation result graph, taking the centroid as the coordinate of the mark point, solving the average distance from the centroid to the edge of the area where the mark point is locat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201225&amp;DB=EPODOC&amp;CC=CN&amp;NR=112132798A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201225&amp;DB=EPODOC&amp;CC=CN&amp;NR=112132798A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU JINGLI</creatorcontrib><creatorcontrib>YI GUODONG</creatorcontrib><creatorcontrib>FENG YANWU</creatorcontrib><title>Complex background PCB mark point image detection method based on Mini ARU-Net network</title><description>The invention discloses a complex background printed circuit board mark point image detection method based on a Mini ARU-Net network. The method comprises the following steps: 1) collecting a printedcircuit board image, performing gray processing, extracting a mark point area as a mark point image, and adding a binary image of the area where a mark point is located as a segmentation label image;2) constructing a Mini ARUNet network, and inputting a mark point image for training and a segmentation label graph thereof into the Mini ARUNet network for training; 3) inputting a to-be-detected mark point image into the Mini ARUNet network obtained by training in the step 2) to perform mark point segmentation to obtain a segmentation result graph; and 4) solving the centroid of the area where the mark point is located according to the segmentation result graph, taking the centroid as the coordinate of the mark point, solving the average distance from the centroid to the edge of the area where the mark point is locat</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwiAUQFkcjHqH7wE60A7qWInGxcYYdW0QvpVQ-AQwenwZPIDTy0vem7KbIBdG_MBdKjtEenkNJ7EFJ6OFQMZnME4OCBozqmzIg8P8JF2GhBqKH4030J6vVYcZPOY3RTtnk4ccEy5-nLHlfncRhwoD9ZiCVFjKXnSc17ypV5t12_zTfAGGdzhV</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>WU JINGLI</creator><creator>YI GUODONG</creator><creator>FENG YANWU</creator><scope>EVB</scope></search><sort><creationdate>20201225</creationdate><title>Complex background PCB mark point image detection method based on Mini ARU-Net network</title><author>WU JINGLI ; YI GUODONG ; FENG YANWU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112132798A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU JINGLI</creatorcontrib><creatorcontrib>YI GUODONG</creatorcontrib><creatorcontrib>FENG YANWU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU JINGLI</au><au>YI GUODONG</au><au>FENG YANWU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Complex background PCB mark point image detection method based on Mini ARU-Net network</title><date>2020-12-25</date><risdate>2020</risdate><abstract>The invention discloses a complex background printed circuit board mark point image detection method based on a Mini ARU-Net network. The method comprises the following steps: 1) collecting a printedcircuit board image, performing gray processing, extracting a mark point area as a mark point image, and adding a binary image of the area where a mark point is located as a segmentation label image;2) constructing a Mini ARUNet network, and inputting a mark point image for training and a segmentation label graph thereof into the Mini ARUNet network for training; 3) inputting a to-be-detected mark point image into the Mini ARUNet network obtained by training in the step 2) to perform mark point segmentation to obtain a segmentation result graph; and 4) solving the centroid of the area where the mark point is located according to the segmentation result graph, taking the centroid as the coordinate of the mark point, solving the average distance from the centroid to the edge of the area where the mark point is locat</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112132798A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Complex background PCB mark point image detection method based on Mini ARU-Net network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20JINGLI&rft.date=2020-12-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112132798A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true