Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle

The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG LEI, ZHANG WEILONG, LI MING, CHEN LIFAN, LI SHOUNIAN, LIN HAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG LEI
ZHANG WEILONG
LI MING
CHEN LIFAN
LI SHOUNIAN
LIN HAO
description The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number of pixels and the gradient amplitude in an original SIFT matching algorithm by adopting a high-low frequency image information separation method, and respectively enhancing the contribution to the main direction; restricting effects in perspective transformation; enhancing the descriptor by using the image structure information, and processing the locally shielded image by using an anisotropic geodesic distance weighting method; utilizing a BBF (Best Bin First) algorithm and a parameter model method for carrying out feature point matching and mismatching elimination, and obtaining a final sparse matching point cloud through sparse bundle adjustment. According to the method, the obtained correct matching number is o
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112101384A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112101384A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112101384A3</originalsourceid><addsrcrecordid>eNqNjj0LwjAQQLs4iPofzt2CsQ6uUhQnB3EvZ3JtDpoPcknBf6-C7k5veTzevIq38CiSgR0OBBIxCYHDrC37ARxlGwz0IYHlwdYxkWbh4AEpMY4gJU303IDkkD4BR4aLA_QGinfoPZmfOpFlPdKymvU4Cq2-XFTr8-neXmqKoaP3gCZPuWuvSu3UVjWH_bH5x3kBYkNDUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle</title><source>esp@cenet</source><creator>WANG LEI ; ZHANG WEILONG ; LI MING ; CHEN LIFAN ; LI SHOUNIAN ; LIN HAO</creator><creatorcontrib>WANG LEI ; ZHANG WEILONG ; LI MING ; CHEN LIFAN ; LI SHOUNIAN ; LIN HAO</creatorcontrib><description>The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number of pixels and the gradient amplitude in an original SIFT matching algorithm by adopting a high-low frequency image information separation method, and respectively enhancing the contribution to the main direction; restricting effects in perspective transformation; enhancing the descriptor by using the image structure information, and processing the locally shielded image by using an anisotropic geodesic distance weighting method; utilizing a BBF (Best Bin First) algorithm and a parameter model method for carrying out feature point matching and mismatching elimination, and obtaining a final sparse matching point cloud through sparse bundle adjustment. According to the method, the obtained correct matching number is o</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201218&amp;DB=EPODOC&amp;CC=CN&amp;NR=112101384A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201218&amp;DB=EPODOC&amp;CC=CN&amp;NR=112101384A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>ZHANG WEILONG</creatorcontrib><creatorcontrib>LI MING</creatorcontrib><creatorcontrib>CHEN LIFAN</creatorcontrib><creatorcontrib>LI SHOUNIAN</creatorcontrib><creatorcontrib>LIN HAO</creatorcontrib><title>Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle</title><description>The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number of pixels and the gradient amplitude in an original SIFT matching algorithm by adopting a high-low frequency image information separation method, and respectively enhancing the contribution to the main direction; restricting effects in perspective transformation; enhancing the descriptor by using the image structure information, and processing the locally shielded image by using an anisotropic geodesic distance weighting method; utilizing a BBF (Best Bin First) algorithm and a parameter model method for carrying out feature point matching and mismatching elimination, and obtaining a final sparse matching point cloud through sparse bundle adjustment. According to the method, the obtained correct matching number is o</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjj0LwjAQQLs4iPofzt2CsQ6uUhQnB3EvZ3JtDpoPcknBf6-C7k5veTzevIq38CiSgR0OBBIxCYHDrC37ARxlGwz0IYHlwdYxkWbh4AEpMY4gJU303IDkkD4BR4aLA_QGinfoPZmfOpFlPdKymvU4Cq2-XFTr8-neXmqKoaP3gCZPuWuvSu3UVjWH_bH5x3kBYkNDUg</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>WANG LEI</creator><creator>ZHANG WEILONG</creator><creator>LI MING</creator><creator>CHEN LIFAN</creator><creator>LI SHOUNIAN</creator><creator>LIN HAO</creator><scope>EVB</scope></search><sort><creationdate>20201218</creationdate><title>Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle</title><author>WANG LEI ; ZHANG WEILONG ; LI MING ; CHEN LIFAN ; LI SHOUNIAN ; LIN HAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112101384A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>ZHANG WEILONG</creatorcontrib><creatorcontrib>LI MING</creatorcontrib><creatorcontrib>CHEN LIFAN</creatorcontrib><creatorcontrib>LI SHOUNIAN</creatorcontrib><creatorcontrib>LIN HAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LEI</au><au>ZHANG WEILONG</au><au>LI MING</au><au>CHEN LIFAN</au><au>LI SHOUNIAN</au><au>LIN HAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle</title><date>2020-12-18</date><risdate>2020</risdate><abstract>The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number of pixels and the gradient amplitude in an original SIFT matching algorithm by adopting a high-low frequency image information separation method, and respectively enhancing the contribution to the main direction; restricting effects in perspective transformation; enhancing the descriptor by using the image structure information, and processing the locally shielded image by using an anisotropic geodesic distance weighting method; utilizing a BBF (Best Bin First) algorithm and a parameter model method for carrying out feature point matching and mismatching elimination, and obtaining a final sparse matching point cloud through sparse bundle adjustment. According to the method, the obtained correct matching number is o</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112101384A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LEI&rft.date=2020-12-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112101384A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true