Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle
The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG LEI ZHANG WEILONG LI MING CHEN LIFAN LI SHOUNIAN LIN HAO |
description | The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number of pixels and the gradient amplitude in an original SIFT matching algorithm by adopting a high-low frequency image information separation method, and respectively enhancing the contribution to the main direction; restricting effects in perspective transformation; enhancing the descriptor by using the image structure information, and processing the locally shielded image by using an anisotropic geodesic distance weighting method; utilizing a BBF (Best Bin First) algorithm and a parameter model method for carrying out feature point matching and mismatching elimination, and obtaining a final sparse matching point cloud through sparse bundle adjustment. According to the method, the obtained correct matching number is o |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112101384A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112101384A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112101384A3</originalsourceid><addsrcrecordid>eNqNjj0LwjAQQLs4iPofzt2CsQ6uUhQnB3EvZ3JtDpoPcknBf6-C7k5veTzevIq38CiSgR0OBBIxCYHDrC37ARxlGwz0IYHlwdYxkWbh4AEpMY4gJU303IDkkD4BR4aLA_QGinfoPZmfOpFlPdKymvU4Cq2-XFTr8-neXmqKoaP3gCZPuWuvSu3UVjWH_bH5x3kBYkNDUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle</title><source>esp@cenet</source><creator>WANG LEI ; ZHANG WEILONG ; LI MING ; CHEN LIFAN ; LI SHOUNIAN ; LIN HAO</creator><creatorcontrib>WANG LEI ; ZHANG WEILONG ; LI MING ; CHEN LIFAN ; LI SHOUNIAN ; LIN HAO</creatorcontrib><description>The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number of pixels and the gradient amplitude in an original SIFT matching algorithm by adopting a high-low frequency image information separation method, and respectively enhancing the contribution to the main direction; restricting effects in perspective transformation; enhancing the descriptor by using the image structure information, and processing the locally shielded image by using an anisotropic geodesic distance weighting method; utilizing a BBF (Best Bin First) algorithm and a parameter model method for carrying out feature point matching and mismatching elimination, and obtaining a final sparse matching point cloud through sparse bundle adjustment. According to the method, the obtained correct matching number is o</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201218&DB=EPODOC&CC=CN&NR=112101384A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201218&DB=EPODOC&CC=CN&NR=112101384A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>ZHANG WEILONG</creatorcontrib><creatorcontrib>LI MING</creatorcontrib><creatorcontrib>CHEN LIFAN</creatorcontrib><creatorcontrib>LI SHOUNIAN</creatorcontrib><creatorcontrib>LIN HAO</creatorcontrib><title>Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle</title><description>The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number of pixels and the gradient amplitude in an original SIFT matching algorithm by adopting a high-low frequency image information separation method, and respectively enhancing the contribution to the main direction; restricting effects in perspective transformation; enhancing the descriptor by using the image structure information, and processing the locally shielded image by using an anisotropic geodesic distance weighting method; utilizing a BBF (Best Bin First) algorithm and a parameter model method for carrying out feature point matching and mismatching elimination, and obtaining a final sparse matching point cloud through sparse bundle adjustment. According to the method, the obtained correct matching number is o</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjj0LwjAQQLs4iPofzt2CsQ6uUhQnB3EvZ3JtDpoPcknBf6-C7k5veTzevIq38CiSgR0OBBIxCYHDrC37ARxlGwz0IYHlwdYxkWbh4AEpMY4gJU303IDkkD4BR4aLA_QGinfoPZmfOpFlPdKymvU4Cq2-XFTr8-neXmqKoaP3gCZPuWuvSu3UVjWH_bH5x3kBYkNDUg</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>WANG LEI</creator><creator>ZHANG WEILONG</creator><creator>LI MING</creator><creator>CHEN LIFAN</creator><creator>LI SHOUNIAN</creator><creator>LIN HAO</creator><scope>EVB</scope></search><sort><creationdate>20201218</creationdate><title>Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle</title><author>WANG LEI ; ZHANG WEILONG ; LI MING ; CHEN LIFAN ; LI SHOUNIAN ; LIN HAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112101384A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>ZHANG WEILONG</creatorcontrib><creatorcontrib>LI MING</creatorcontrib><creatorcontrib>CHEN LIFAN</creatorcontrib><creatorcontrib>LI SHOUNIAN</creatorcontrib><creatorcontrib>LIN HAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LEI</au><au>ZHANG WEILONG</au><au>LI MING</au><au>CHEN LIFAN</au><au>LI SHOUNIAN</au><au>LIN HAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle</title><date>2020-12-18</date><risdate>2020</risdate><abstract>The invention belongs to the technical field of unmanned aerial vehicles, and discloses a high-precision aerial survey robust image sparse matching method, a storage medium and an unmanned aerial vehicle. The method comprises the following steps: weakening the mutual interference between the number of pixels and the gradient amplitude in an original SIFT matching algorithm by adopting a high-low frequency image information separation method, and respectively enhancing the contribution to the main direction; restricting effects in perspective transformation; enhancing the descriptor by using the image structure information, and processing the locally shielded image by using an anisotropic geodesic distance weighting method; utilizing a BBF (Best Bin First) algorithm and a parameter model method for carrying out feature point matching and mismatching elimination, and obtaining a final sparse matching point cloud through sparse bundle adjustment. According to the method, the obtained correct matching number is o</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112101384A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Robust image sparse matching method for high-precision aerial survey, storage medium and unmanned aerial vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LEI&rft.date=2020-12-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112101384A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |