Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network
The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | JING ZEHUAN LI PENG WANG ZHAO YIN XUEFENG WU BIN ZHANG KUI YUAN SHIBO |
description | The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate is low. The implementation scheme comprises the steps of collecting radar radiation source signalsto make a data set; dividing the data set into a training set and a verification set; constructing a one-dimensional self-stepping convolutional neural network; setting a self-stepping sample trainingstrategy and training the network by using the training set; and inputting the data of the test set into the trained one-dimensional self-stepping convolutional neural network, and outputting the recognition rate of the overall test signal. The one-dimensional self-stepping convolutional neural network constructed by the method is simple in structure and small in parameter quantity, can directlyextract the time domain sig |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112098957A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112098957A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112098957A3</originalsourceid><addsrcrecordid>eNqNijsOwjAQRNNQIOAOywEiERCClCgCUVHRR8bewApn1_I6kOMTPgegmaeZN-Osr6QNHnuIxpn4TjKJhEGlixaBHHKihux3bTHdxMHFKDoYujDmjlpkHazxoOibXBOGQHwFK_wQ36WvY-ziB-kp8T7NRo3xirMfJ9n8sD9XxxyD1KjBWByedXUqiuWi3JbrzW71z-cFY75HqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network</title><source>esp@cenet</source><creator>JING ZEHUAN ; LI PENG ; WANG ZHAO ; YIN XUEFENG ; WU BIN ; ZHANG KUI ; YUAN SHIBO</creator><creatorcontrib>JING ZEHUAN ; LI PENG ; WANG ZHAO ; YIN XUEFENG ; WU BIN ; ZHANG KUI ; YUAN SHIBO</creatorcontrib><description>The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate is low. The implementation scheme comprises the steps of collecting radar radiation source signalsto make a data set; dividing the data set into a training set and a verification set; constructing a one-dimensional self-stepping convolutional neural network; setting a self-stepping sample trainingstrategy and training the network by using the training set; and inputting the data of the test set into the trained one-dimensional self-stepping convolutional neural network, and outputting the recognition rate of the overall test signal. The one-dimensional self-stepping convolutional neural network constructed by the method is simple in structure and small in parameter quantity, can directlyextract the time domain sig</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; TESTING</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201218&DB=EPODOC&CC=CN&NR=112098957A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201218&DB=EPODOC&CC=CN&NR=112098957A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JING ZEHUAN</creatorcontrib><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>WANG ZHAO</creatorcontrib><creatorcontrib>YIN XUEFENG</creatorcontrib><creatorcontrib>WU BIN</creatorcontrib><creatorcontrib>ZHANG KUI</creatorcontrib><creatorcontrib>YUAN SHIBO</creatorcontrib><title>Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network</title><description>The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate is low. The implementation scheme comprises the steps of collecting radar radiation source signalsto make a data set; dividing the data set into a training set and a verification set; constructing a one-dimensional self-stepping convolutional neural network; setting a self-stepping sample trainingstrategy and training the network by using the training set; and inputting the data of the test set into the trained one-dimensional self-stepping convolutional neural network, and outputting the recognition rate of the overall test signal. The one-dimensional self-stepping convolutional neural network constructed by the method is simple in structure and small in parameter quantity, can directlyextract the time domain sig</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsOwjAQRNNQIOAOywEiERCClCgCUVHRR8bewApn1_I6kOMTPgegmaeZN-Osr6QNHnuIxpn4TjKJhEGlixaBHHKihux3bTHdxMHFKDoYujDmjlpkHazxoOibXBOGQHwFK_wQ36WvY-ziB-kp8T7NRo3xirMfJ9n8sD9XxxyD1KjBWByedXUqiuWi3JbrzW71z-cFY75HqQ</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>JING ZEHUAN</creator><creator>LI PENG</creator><creator>WANG ZHAO</creator><creator>YIN XUEFENG</creator><creator>WU BIN</creator><creator>ZHANG KUI</creator><creator>YUAN SHIBO</creator><scope>EVB</scope></search><sort><creationdate>20201218</creationdate><title>Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network</title><author>JING ZEHUAN ; LI PENG ; WANG ZHAO ; YIN XUEFENG ; WU BIN ; ZHANG KUI ; YUAN SHIBO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112098957A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>JING ZEHUAN</creatorcontrib><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>WANG ZHAO</creatorcontrib><creatorcontrib>YIN XUEFENG</creatorcontrib><creatorcontrib>WU BIN</creatorcontrib><creatorcontrib>ZHANG KUI</creatorcontrib><creatorcontrib>YUAN SHIBO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JING ZEHUAN</au><au>LI PENG</au><au>WANG ZHAO</au><au>YIN XUEFENG</au><au>WU BIN</au><au>ZHANG KUI</au><au>YUAN SHIBO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network</title><date>2020-12-18</date><risdate>2020</risdate><abstract>The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate is low. The implementation scheme comprises the steps of collecting radar radiation source signalsto make a data set; dividing the data set into a training set and a verification set; constructing a one-dimensional self-stepping convolutional neural network; setting a self-stepping sample trainingstrategy and training the network by using the training set; and inputting the data of the test set into the trained one-dimensional self-stepping convolutional neural network, and outputting the recognition rate of the overall test signal. The one-dimensional self-stepping convolutional neural network constructed by the method is simple in structure and small in parameter quantity, can directlyextract the time domain sig</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112098957A |
source | esp@cenet |
subjects | ANALOGOUS ARRANGEMENTS USING OTHER WAVES CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES MEASURING PHYSICS RADIO DIRECTION-FINDING RADIO NAVIGATION TESTING |
title | Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JING%20ZEHUAN&rft.date=2020-12-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112098957A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |