Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network

The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JING ZEHUAN, LI PENG, WANG ZHAO, YIN XUEFENG, WU BIN, ZHANG KUI, YUAN SHIBO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JING ZEHUAN
LI PENG
WANG ZHAO
YIN XUEFENG
WU BIN
ZHANG KUI
YUAN SHIBO
description The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate is low. The implementation scheme comprises the steps of collecting radar radiation source signalsto make a data set; dividing the data set into a training set and a verification set; constructing a one-dimensional self-stepping convolutional neural network; setting a self-stepping sample trainingstrategy and training the network by using the training set; and inputting the data of the test set into the trained one-dimensional self-stepping convolutional neural network, and outputting the recognition rate of the overall test signal. The one-dimensional self-stepping convolutional neural network constructed by the method is simple in structure and small in parameter quantity, can directlyextract the time domain sig
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112098957A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112098957A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112098957A3</originalsourceid><addsrcrecordid>eNqNijsOwjAQRNNQIOAOywEiERCClCgCUVHRR8bewApn1_I6kOMTPgegmaeZN-Osr6QNHnuIxpn4TjKJhEGlixaBHHKihux3bTHdxMHFKDoYujDmjlpkHazxoOibXBOGQHwFK_wQ36WvY-ziB-kp8T7NRo3xirMfJ9n8sD9XxxyD1KjBWByedXUqiuWi3JbrzW71z-cFY75HqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network</title><source>esp@cenet</source><creator>JING ZEHUAN ; LI PENG ; WANG ZHAO ; YIN XUEFENG ; WU BIN ; ZHANG KUI ; YUAN SHIBO</creator><creatorcontrib>JING ZEHUAN ; LI PENG ; WANG ZHAO ; YIN XUEFENG ; WU BIN ; ZHANG KUI ; YUAN SHIBO</creatorcontrib><description>The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate is low. The implementation scheme comprises the steps of collecting radar radiation source signalsto make a data set; dividing the data set into a training set and a verification set; constructing a one-dimensional self-stepping convolutional neural network; setting a self-stepping sample trainingstrategy and training the network by using the training set; and inputting the data of the test set into the trained one-dimensional self-stepping convolutional neural network, and outputting the recognition rate of the overall test signal. The one-dimensional self-stepping convolutional neural network constructed by the method is simple in structure and small in parameter quantity, can directlyextract the time domain sig</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; TESTING</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201218&amp;DB=EPODOC&amp;CC=CN&amp;NR=112098957A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201218&amp;DB=EPODOC&amp;CC=CN&amp;NR=112098957A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JING ZEHUAN</creatorcontrib><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>WANG ZHAO</creatorcontrib><creatorcontrib>YIN XUEFENG</creatorcontrib><creatorcontrib>WU BIN</creatorcontrib><creatorcontrib>ZHANG KUI</creatorcontrib><creatorcontrib>YUAN SHIBO</creatorcontrib><title>Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network</title><description>The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate is low. The implementation scheme comprises the steps of collecting radar radiation source signalsto make a data set; dividing the data set into a training set and a verification set; constructing a one-dimensional self-stepping convolutional neural network; setting a self-stepping sample trainingstrategy and training the network by using the training set; and inputting the data of the test set into the trained one-dimensional self-stepping convolutional neural network, and outputting the recognition rate of the overall test signal. The one-dimensional self-stepping convolutional neural network constructed by the method is simple in structure and small in parameter quantity, can directlyextract the time domain sig</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsOwjAQRNNQIOAOywEiERCClCgCUVHRR8bewApn1_I6kOMTPgegmaeZN-Osr6QNHnuIxpn4TjKJhEGlixaBHHKihux3bTHdxMHFKDoYujDmjlpkHazxoOibXBOGQHwFK_wQ36WvY-ziB-kp8T7NRo3xirMfJ9n8sD9XxxyD1KjBWByedXUqiuWi3JbrzW71z-cFY75HqQ</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>JING ZEHUAN</creator><creator>LI PENG</creator><creator>WANG ZHAO</creator><creator>YIN XUEFENG</creator><creator>WU BIN</creator><creator>ZHANG KUI</creator><creator>YUAN SHIBO</creator><scope>EVB</scope></search><sort><creationdate>20201218</creationdate><title>Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network</title><author>JING ZEHUAN ; LI PENG ; WANG ZHAO ; YIN XUEFENG ; WU BIN ; ZHANG KUI ; YUAN SHIBO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112098957A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>JING ZEHUAN</creatorcontrib><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>WANG ZHAO</creatorcontrib><creatorcontrib>YIN XUEFENG</creatorcontrib><creatorcontrib>WU BIN</creatorcontrib><creatorcontrib>ZHANG KUI</creatorcontrib><creatorcontrib>YUAN SHIBO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JING ZEHUAN</au><au>LI PENG</au><au>WANG ZHAO</au><au>YIN XUEFENG</au><au>WU BIN</au><au>ZHANG KUI</au><au>YUAN SHIBO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network</title><date>2020-12-18</date><risdate>2020</risdate><abstract>The invention provides a complex radar radiation source identification method based on a one-dimensional self-stepping convolutional neural network, and solves the problems that in the prior art, dimension transformation processing needs to be carried out on radar signals and the identification rate is low. The implementation scheme comprises the steps of collecting radar radiation source signalsto make a data set; dividing the data set into a training set and a verification set; constructing a one-dimensional self-stepping convolutional neural network; setting a self-stepping sample trainingstrategy and training the network by using the training set; and inputting the data of the test set into the trained one-dimensional self-stepping convolutional neural network, and outputting the recognition rate of the overall test signal. The one-dimensional self-stepping convolutional neural network constructed by the method is simple in structure and small in parameter quantity, can directlyextract the time domain sig</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112098957A
source esp@cenet
subjects ANALOGOUS ARRANGEMENTS USING OTHER WAVES
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES
LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES
MEASURING
PHYSICS
RADIO DIRECTION-FINDING
RADIO NAVIGATION
TESTING
title Complex radar radiation source identification method based on one-dimensional self-stepping convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JING%20ZEHUAN&rft.date=2020-12-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112098957A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true