Decision information generation method and device, equipment and storage medium
The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the en...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHANG BINGXU LI YUJI HE LIU |
description | The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the environment information to obtain a target feature vector; inputting the target feature vector into adecision information generation model to obtain decision information corresponding to the target feature vector, the decision information generation model being a bidirectional LSTM network model, the model structure and the model parameters of the decision information generation model being obtained by training according to the sample state parameters, the sample environment information and thesample decision information respectively. Through the technical scheme, the defects that an existing intelligent vehicle cannot be self-adjusted based on rule learning in the automatic driving process, scene coverage is incompl |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112085165A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112085165A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112085165A3</originalsourceid><addsrcrecordid>eNrjZPB3SU3OLM7Mz1PIzEvLL8pNLAGx01PzUosgzNzUkoz8FIXEvBSFlNSyzORUHYXUwtLMgtzUvBKwaHFJflFieipQYUpmaS4PA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMBhpdEu_sZ2hoZGBhamhm6mhMjBoAfLc3IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Decision information generation method and device, equipment and storage medium</title><source>esp@cenet</source><creator>SHANG BINGXU ; LI YUJI ; HE LIU</creator><creatorcontrib>SHANG BINGXU ; LI YUJI ; HE LIU</creatorcontrib><description>The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the environment information to obtain a target feature vector; inputting the target feature vector into adecision information generation model to obtain decision information corresponding to the target feature vector, the decision information generation model being a bidirectional LSTM network model, the model structure and the model parameters of the decision information generation model being obtained by training according to the sample state parameters, the sample environment information and thesample decision information respectively. Through the technical scheme, the defects that an existing intelligent vehicle cannot be self-adjusted based on rule learning in the automatic driving process, scene coverage is incompl</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201215&DB=EPODOC&CC=CN&NR=112085165A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201215&DB=EPODOC&CC=CN&NR=112085165A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHANG BINGXU</creatorcontrib><creatorcontrib>LI YUJI</creatorcontrib><creatorcontrib>HE LIU</creatorcontrib><title>Decision information generation method and device, equipment and storage medium</title><description>The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the environment information to obtain a target feature vector; inputting the target feature vector into adecision information generation model to obtain decision information corresponding to the target feature vector, the decision information generation model being a bidirectional LSTM network model, the model structure and the model parameters of the decision information generation model being obtained by training according to the sample state parameters, the sample environment information and thesample decision information respectively. Through the technical scheme, the defects that an existing intelligent vehicle cannot be self-adjusted based on rule learning in the automatic driving process, scene coverage is incompl</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3SU3OLM7Mz1PIzEvLL8pNLAGx01PzUosgzNzUkoz8FIXEvBSFlNSyzORUHYXUwtLMgtzUvBKwaHFJflFieipQYUpmaS4PA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMBhpdEu_sZ2hoZGBhamhm6mhMjBoAfLc3IQ</recordid><startdate>20201215</startdate><enddate>20201215</enddate><creator>SHANG BINGXU</creator><creator>LI YUJI</creator><creator>HE LIU</creator><scope>EVB</scope></search><sort><creationdate>20201215</creationdate><title>Decision information generation method and device, equipment and storage medium</title><author>SHANG BINGXU ; LI YUJI ; HE LIU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112085165A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHANG BINGXU</creatorcontrib><creatorcontrib>LI YUJI</creatorcontrib><creatorcontrib>HE LIU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHANG BINGXU</au><au>LI YUJI</au><au>HE LIU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Decision information generation method and device, equipment and storage medium</title><date>2020-12-15</date><risdate>2020</risdate><abstract>The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the environment information to obtain a target feature vector; inputting the target feature vector into adecision information generation model to obtain decision information corresponding to the target feature vector, the decision information generation model being a bidirectional LSTM network model, the model structure and the model parameters of the decision information generation model being obtained by training according to the sample state parameters, the sample environment information and thesample decision information respectively. Through the technical scheme, the defects that an existing intelligent vehicle cannot be self-adjusted based on rule learning in the automatic driving process, scene coverage is incompl</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112085165A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Decision information generation method and device, equipment and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHANG%20BINGXU&rft.date=2020-12-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112085165A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |