Decision information generation method and device, equipment and storage medium

The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHANG BINGXU, LI YUJI, HE LIU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHANG BINGXU
LI YUJI
HE LIU
description The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the environment information to obtain a target feature vector; inputting the target feature vector into adecision information generation model to obtain decision information corresponding to the target feature vector, the decision information generation model being a bidirectional LSTM network model, the model structure and the model parameters of the decision information generation model being obtained by training according to the sample state parameters, the sample environment information and thesample decision information respectively. Through the technical scheme, the defects that an existing intelligent vehicle cannot be self-adjusted based on rule learning in the automatic driving process, scene coverage is incompl
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112085165A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112085165A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112085165A3</originalsourceid><addsrcrecordid>eNrjZPB3SU3OLM7Mz1PIzEvLL8pNLAGx01PzUosgzNzUkoz8FIXEvBSFlNSyzORUHYXUwtLMgtzUvBKwaHFJflFieipQYUpmaS4PA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMBhpdEu_sZ2hoZGBhamhm6mhMjBoAfLc3IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Decision information generation method and device, equipment and storage medium</title><source>esp@cenet</source><creator>SHANG BINGXU ; LI YUJI ; HE LIU</creator><creatorcontrib>SHANG BINGXU ; LI YUJI ; HE LIU</creatorcontrib><description>The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the environment information to obtain a target feature vector; inputting the target feature vector into adecision information generation model to obtain decision information corresponding to the target feature vector, the decision information generation model being a bidirectional LSTM network model, the model structure and the model parameters of the decision information generation model being obtained by training according to the sample state parameters, the sample environment information and thesample decision information respectively. Through the technical scheme, the defects that an existing intelligent vehicle cannot be self-adjusted based on rule learning in the automatic driving process, scene coverage is incompl</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201215&amp;DB=EPODOC&amp;CC=CN&amp;NR=112085165A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201215&amp;DB=EPODOC&amp;CC=CN&amp;NR=112085165A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHANG BINGXU</creatorcontrib><creatorcontrib>LI YUJI</creatorcontrib><creatorcontrib>HE LIU</creatorcontrib><title>Decision information generation method and device, equipment and storage medium</title><description>The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the environment information to obtain a target feature vector; inputting the target feature vector into adecision information generation model to obtain decision information corresponding to the target feature vector, the decision information generation model being a bidirectional LSTM network model, the model structure and the model parameters of the decision information generation model being obtained by training according to the sample state parameters, the sample environment information and thesample decision information respectively. Through the technical scheme, the defects that an existing intelligent vehicle cannot be self-adjusted based on rule learning in the automatic driving process, scene coverage is incompl</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3SU3OLM7Mz1PIzEvLL8pNLAGx01PzUosgzNzUkoz8FIXEvBSFlNSyzORUHYXUwtLMgtzUvBKwaHFJflFieipQYUpmaS4PA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMBhpdEu_sZ2hoZGBhamhm6mhMjBoAfLc3IQ</recordid><startdate>20201215</startdate><enddate>20201215</enddate><creator>SHANG BINGXU</creator><creator>LI YUJI</creator><creator>HE LIU</creator><scope>EVB</scope></search><sort><creationdate>20201215</creationdate><title>Decision information generation method and device, equipment and storage medium</title><author>SHANG BINGXU ; LI YUJI ; HE LIU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112085165A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHANG BINGXU</creatorcontrib><creatorcontrib>LI YUJI</creatorcontrib><creatorcontrib>HE LIU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHANG BINGXU</au><au>LI YUJI</au><au>HE LIU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Decision information generation method and device, equipment and storage medium</title><date>2020-12-15</date><risdate>2020</risdate><abstract>The invention discloses a decision information generation method and device, equipment and a storage medium. The method comprises the steps: acquiring state parameters and environment information of acurrent vehicle at the current moment; performing data processing on the state parameters and the environment information to obtain a target feature vector; inputting the target feature vector into adecision information generation model to obtain decision information corresponding to the target feature vector, the decision information generation model being a bidirectional LSTM network model, the model structure and the model parameters of the decision information generation model being obtained by training according to the sample state parameters, the sample environment information and thesample decision information respectively. Through the technical scheme, the defects that an existing intelligent vehicle cannot be self-adjusted based on rule learning in the automatic driving process, scene coverage is incompl</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112085165A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Decision information generation method and device, equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHANG%20BINGXU&rft.date=2020-12-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112085165A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true