Assembly operation action recognition method based on static and dynamic separation
The invention discloses an assembly operation action recognition method based on static and dynamic separation, and the method specifically comprises the steps: collecting an action gesture, and dividing original data corresponding to the action gesture into a training sample and a recognition sampl...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WAN PENG GAO XINQIN YANG MINGSHUN QIAO QI LI BINPENG SHI SHENGRUI LIU YONG WANG XIANG |
description | The invention discloses an assembly operation action recognition method based on static and dynamic separation, and the method specifically comprises the steps: collecting an action gesture, and dividing original data corresponding to the action gesture into a training sample and a recognition sample; carrying out effective data segment extraction on the collected original data of the action gesture; calculating a feature threshold value according to the action gestures in the training sample, and dividing the action gestures in the recognition sample according to the feature threshold value;and respectively inputting the characteristic values of the posture invariant gesture and the posture variable gesture in the divided identification samples into a KNN identification model and a GMM-HMM identification model for training to respectively obtain identification models of the posture invariant gesture and the posture variable gesture. According to the method, the characteristic valuesof the two gestures with i |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112084898A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112084898A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112084898A3</originalsourceid><addsrcrecordid>eNrjZAh2LC5OzU3KqVTIL0gtSizJzM9TSEwGU0WpyfnpeZlgdm5qSUZ-ikJSYnFqigKQX1wCVJqskJiXopBSmZeYC2QXpxYkQgzgYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhkYGFiYWlhaOxsSoAQCY6jjv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Assembly operation action recognition method based on static and dynamic separation</title><source>esp@cenet</source><creator>WAN PENG ; GAO XINQIN ; YANG MINGSHUN ; QIAO QI ; LI BINPENG ; SHI SHENGRUI ; LIU YONG ; WANG XIANG</creator><creatorcontrib>WAN PENG ; GAO XINQIN ; YANG MINGSHUN ; QIAO QI ; LI BINPENG ; SHI SHENGRUI ; LIU YONG ; WANG XIANG</creatorcontrib><description>The invention discloses an assembly operation action recognition method based on static and dynamic separation, and the method specifically comprises the steps: collecting an action gesture, and dividing original data corresponding to the action gesture into a training sample and a recognition sample; carrying out effective data segment extraction on the collected original data of the action gesture; calculating a feature threshold value according to the action gestures in the training sample, and dividing the action gestures in the recognition sample according to the feature threshold value;and respectively inputting the characteristic values of the posture invariant gesture and the posture variable gesture in the divided identification samples into a KNN identification model and a GMM-HMM identification model for training to respectively obtain identification models of the posture invariant gesture and the posture variable gesture. According to the method, the characteristic valuesof the two gestures with i</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201215&DB=EPODOC&CC=CN&NR=112084898A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201215&DB=EPODOC&CC=CN&NR=112084898A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WAN PENG</creatorcontrib><creatorcontrib>GAO XINQIN</creatorcontrib><creatorcontrib>YANG MINGSHUN</creatorcontrib><creatorcontrib>QIAO QI</creatorcontrib><creatorcontrib>LI BINPENG</creatorcontrib><creatorcontrib>SHI SHENGRUI</creatorcontrib><creatorcontrib>LIU YONG</creatorcontrib><creatorcontrib>WANG XIANG</creatorcontrib><title>Assembly operation action recognition method based on static and dynamic separation</title><description>The invention discloses an assembly operation action recognition method based on static and dynamic separation, and the method specifically comprises the steps: collecting an action gesture, and dividing original data corresponding to the action gesture into a training sample and a recognition sample; carrying out effective data segment extraction on the collected original data of the action gesture; calculating a feature threshold value according to the action gestures in the training sample, and dividing the action gestures in the recognition sample according to the feature threshold value;and respectively inputting the characteristic values of the posture invariant gesture and the posture variable gesture in the divided identification samples into a KNN identification model and a GMM-HMM identification model for training to respectively obtain identification models of the posture invariant gesture and the posture variable gesture. According to the method, the characteristic valuesof the two gestures with i</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAh2LC5OzU3KqVTIL0gtSizJzM9TSEwGU0WpyfnpeZlgdm5qSUZ-ikJSYnFqigKQX1wCVJqskJiXopBSmZeYC2QXpxYkQgzgYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhkYGFiYWlhaOxsSoAQCY6jjv</recordid><startdate>20201215</startdate><enddate>20201215</enddate><creator>WAN PENG</creator><creator>GAO XINQIN</creator><creator>YANG MINGSHUN</creator><creator>QIAO QI</creator><creator>LI BINPENG</creator><creator>SHI SHENGRUI</creator><creator>LIU YONG</creator><creator>WANG XIANG</creator><scope>EVB</scope></search><sort><creationdate>20201215</creationdate><title>Assembly operation action recognition method based on static and dynamic separation</title><author>WAN PENG ; GAO XINQIN ; YANG MINGSHUN ; QIAO QI ; LI BINPENG ; SHI SHENGRUI ; LIU YONG ; WANG XIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112084898A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WAN PENG</creatorcontrib><creatorcontrib>GAO XINQIN</creatorcontrib><creatorcontrib>YANG MINGSHUN</creatorcontrib><creatorcontrib>QIAO QI</creatorcontrib><creatorcontrib>LI BINPENG</creatorcontrib><creatorcontrib>SHI SHENGRUI</creatorcontrib><creatorcontrib>LIU YONG</creatorcontrib><creatorcontrib>WANG XIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WAN PENG</au><au>GAO XINQIN</au><au>YANG MINGSHUN</au><au>QIAO QI</au><au>LI BINPENG</au><au>SHI SHENGRUI</au><au>LIU YONG</au><au>WANG XIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Assembly operation action recognition method based on static and dynamic separation</title><date>2020-12-15</date><risdate>2020</risdate><abstract>The invention discloses an assembly operation action recognition method based on static and dynamic separation, and the method specifically comprises the steps: collecting an action gesture, and dividing original data corresponding to the action gesture into a training sample and a recognition sample; carrying out effective data segment extraction on the collected original data of the action gesture; calculating a feature threshold value according to the action gestures in the training sample, and dividing the action gestures in the recognition sample according to the feature threshold value;and respectively inputting the characteristic values of the posture invariant gesture and the posture variable gesture in the divided identification samples into a KNN identification model and a GMM-HMM identification model for training to respectively obtain identification models of the posture invariant gesture and the posture variable gesture. According to the method, the characteristic valuesof the two gestures with i</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112084898A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Assembly operation action recognition method based on static and dynamic separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WAN%20PENG&rft.date=2020-12-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112084898A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |