Crop waterlogging image classification detection and implementation method based on Hadoop

A crop waterlogging image classification detection and implementation method based on Hadoop is characterized by comprising the following steps: a) collecting crop field waterlogging images, and performing image correction and preprocessing and image principal component analysis; b) uploading the im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GE DAOKUO, CAO HONGXIN, ZHANG WEIXIN, ZHANG WENYU, XUAN HUI, YU LINHUI, XIA JI'AN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GE DAOKUO
CAO HONGXIN
ZHANG WEIXIN
ZHANG WENYU
XUAN HUI
YU LINHUI
XIA JI'AN
description A crop waterlogging image classification detection and implementation method based on Hadoop is characterized by comprising the following steps: a) collecting crop field waterlogging images, and performing image correction and preprocessing and image principal component analysis; b) uploading the image matrix to a Hadoop computing platform for distributed storage, and compiling a parallel neural network algorithm; and c) carrying out algorithm modeling and prediction, and carrying out classification analysis on crop waterlogging image information. Distributed parallel classification analysis of the image data under crop disaster stress is performed through the Hadoop framework so that modeling and prediction speed of the classification algorithm can be accelerated, and the larger the imagedata size is, the more obvious the advantage is compared with the single-machine mode. A neural network algorithm is compiled by using a Scala language, and the algorithm is suitable for parallel operation under a Hadoop fra
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112070062A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112070062A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112070062A3</originalsourceid><addsrcrecordid>eNqNirEKwjAURbM4iPoPzw8Q0go6S1A6OTm5lGdyGwNpXmgC_r5F_QCncw_3LNXdTJLpxRVTFO9D8hRG9iAbuZQwBMs1SCKHCvtZnNyc5IgRqX7PEfUpjh5c4Gj2jp1IXqvFwLFg8-NKbS_nm-l2yNKjZLZIqL25Nk2rj1of2tP-n-YNb4Q7ZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Crop waterlogging image classification detection and implementation method based on Hadoop</title><source>esp@cenet</source><creator>GE DAOKUO ; CAO HONGXIN ; ZHANG WEIXIN ; ZHANG WENYU ; XUAN HUI ; YU LINHUI ; XIA JI'AN</creator><creatorcontrib>GE DAOKUO ; CAO HONGXIN ; ZHANG WEIXIN ; ZHANG WENYU ; XUAN HUI ; YU LINHUI ; XIA JI'AN</creatorcontrib><description>A crop waterlogging image classification detection and implementation method based on Hadoop is characterized by comprising the following steps: a) collecting crop field waterlogging images, and performing image correction and preprocessing and image principal component analysis; b) uploading the image matrix to a Hadoop computing platform for distributed storage, and compiling a parallel neural network algorithm; and c) carrying out algorithm modeling and prediction, and carrying out classification analysis on crop waterlogging image information. Distributed parallel classification analysis of the image data under crop disaster stress is performed through the Hadoop framework so that modeling and prediction speed of the classification algorithm can be accelerated, and the larger the imagedata size is, the more obvious the advantage is compared with the single-machine mode. A neural network algorithm is compiled by using a Scala language, and the algorithm is suitable for parallel operation under a Hadoop fra</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201211&amp;DB=EPODOC&amp;CC=CN&amp;NR=112070062A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201211&amp;DB=EPODOC&amp;CC=CN&amp;NR=112070062A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GE DAOKUO</creatorcontrib><creatorcontrib>CAO HONGXIN</creatorcontrib><creatorcontrib>ZHANG WEIXIN</creatorcontrib><creatorcontrib>ZHANG WENYU</creatorcontrib><creatorcontrib>XUAN HUI</creatorcontrib><creatorcontrib>YU LINHUI</creatorcontrib><creatorcontrib>XIA JI'AN</creatorcontrib><title>Crop waterlogging image classification detection and implementation method based on Hadoop</title><description>A crop waterlogging image classification detection and implementation method based on Hadoop is characterized by comprising the following steps: a) collecting crop field waterlogging images, and performing image correction and preprocessing and image principal component analysis; b) uploading the image matrix to a Hadoop computing platform for distributed storage, and compiling a parallel neural network algorithm; and c) carrying out algorithm modeling and prediction, and carrying out classification analysis on crop waterlogging image information. Distributed parallel classification analysis of the image data under crop disaster stress is performed through the Hadoop framework so that modeling and prediction speed of the classification algorithm can be accelerated, and the larger the imagedata size is, the more obvious the advantage is compared with the single-machine mode. A neural network algorithm is compiled by using a Scala language, and the algorithm is suitable for parallel operation under a Hadoop fra</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAURbM4iPoPzw8Q0go6S1A6OTm5lGdyGwNpXmgC_r5F_QCncw_3LNXdTJLpxRVTFO9D8hRG9iAbuZQwBMs1SCKHCvtZnNyc5IgRqX7PEfUpjh5c4Gj2jp1IXqvFwLFg8-NKbS_nm-l2yNKjZLZIqL25Nk2rj1of2tP-n-YNb4Q7ZA</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>GE DAOKUO</creator><creator>CAO HONGXIN</creator><creator>ZHANG WEIXIN</creator><creator>ZHANG WENYU</creator><creator>XUAN HUI</creator><creator>YU LINHUI</creator><creator>XIA JI'AN</creator><scope>EVB</scope></search><sort><creationdate>20201211</creationdate><title>Crop waterlogging image classification detection and implementation method based on Hadoop</title><author>GE DAOKUO ; CAO HONGXIN ; ZHANG WEIXIN ; ZHANG WENYU ; XUAN HUI ; YU LINHUI ; XIA JI'AN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112070062A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>GE DAOKUO</creatorcontrib><creatorcontrib>CAO HONGXIN</creatorcontrib><creatorcontrib>ZHANG WEIXIN</creatorcontrib><creatorcontrib>ZHANG WENYU</creatorcontrib><creatorcontrib>XUAN HUI</creatorcontrib><creatorcontrib>YU LINHUI</creatorcontrib><creatorcontrib>XIA JI'AN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GE DAOKUO</au><au>CAO HONGXIN</au><au>ZHANG WEIXIN</au><au>ZHANG WENYU</au><au>XUAN HUI</au><au>YU LINHUI</au><au>XIA JI'AN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Crop waterlogging image classification detection and implementation method based on Hadoop</title><date>2020-12-11</date><risdate>2020</risdate><abstract>A crop waterlogging image classification detection and implementation method based on Hadoop is characterized by comprising the following steps: a) collecting crop field waterlogging images, and performing image correction and preprocessing and image principal component analysis; b) uploading the image matrix to a Hadoop computing platform for distributed storage, and compiling a parallel neural network algorithm; and c) carrying out algorithm modeling and prediction, and carrying out classification analysis on crop waterlogging image information. Distributed parallel classification analysis of the image data under crop disaster stress is performed through the Hadoop framework so that modeling and prediction speed of the classification algorithm can be accelerated, and the larger the imagedata size is, the more obvious the advantage is compared with the single-machine mode. A neural network algorithm is compiled by using a Scala language, and the algorithm is suitable for parallel operation under a Hadoop fra</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112070062A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Crop waterlogging image classification detection and implementation method based on Hadoop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GE%20DAOKUO&rft.date=2020-12-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112070062A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true