Convolutional neural network system

A convolutional neural network method includes: determining a temporary buffer layer between a first layer and a final layer of a convolutional neural network system; in a first stage, convolution operation is executed from a first layer to a temporary buffer layer of the convolutional neural networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIN YUNSHENG, TANG DIWEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIN YUNSHENG
TANG DIWEN
description A convolutional neural network method includes: determining a temporary buffer layer between a first layer and a final layer of a convolutional neural network system; in a first stage, convolution operation is executed from a first layer to a temporary buffer layer of the convolutional neural network system according to part of input data of a previous level of the temporary buffer layer so as togenerate a feature map line; and in the second stage, executing convolution operation from the temporary buffer layer to the final layer of the convolutional neural network system to generate a feature map. 一种卷积神经网络方法,其包含:决定一暂时缓冲层,其位于卷积神经网络系统的第一层与最终层之间;于第一阶段,从卷积神经网络系统的第一层至暂时缓冲层,根据该暂时缓冲层之前层级的部分输入数据,执行卷积操作以产生一特征图线;及于第二阶段,从卷积神经网络系统的暂时缓冲层至最终层,执行卷积操作以产生一特征图。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112052935A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112052935A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112052935A3</originalsourceid><addsrcrecordid>eNrjZFB2zs8ry88pLcnMz0vMUchLLS0CUyXl-UXZCsWVxSWpuTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fagh3tnP0NDIwNTI0tjU0ZgYNQAlQCcF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Convolutional neural network system</title><source>esp@cenet</source><creator>LIN YUNSHENG ; TANG DIWEN</creator><creatorcontrib>LIN YUNSHENG ; TANG DIWEN</creatorcontrib><description>A convolutional neural network method includes: determining a temporary buffer layer between a first layer and a final layer of a convolutional neural network system; in a first stage, convolution operation is executed from a first layer to a temporary buffer layer of the convolutional neural network system according to part of input data of a previous level of the temporary buffer layer so as togenerate a feature map line; and in the second stage, executing convolution operation from the temporary buffer layer to the final layer of the convolutional neural network system to generate a feature map. 一种卷积神经网络方法,其包含:决定一暂时缓冲层,其位于卷积神经网络系统的第一层与最终层之间;于第一阶段,从卷积神经网络系统的第一层至暂时缓冲层,根据该暂时缓冲层之前层级的部分输入数据,执行卷积操作以产生一特征图线;及于第二阶段,从卷积神经网络系统的暂时缓冲层至最终层,执行卷积操作以产生一特征图。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201208&amp;DB=EPODOC&amp;CC=CN&amp;NR=112052935A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201208&amp;DB=EPODOC&amp;CC=CN&amp;NR=112052935A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN YUNSHENG</creatorcontrib><creatorcontrib>TANG DIWEN</creatorcontrib><title>Convolutional neural network system</title><description>A convolutional neural network method includes: determining a temporary buffer layer between a first layer and a final layer of a convolutional neural network system; in a first stage, convolution operation is executed from a first layer to a temporary buffer layer of the convolutional neural network system according to part of input data of a previous level of the temporary buffer layer so as togenerate a feature map line; and in the second stage, executing convolution operation from the temporary buffer layer to the final layer of the convolutional neural network system to generate a feature map. 一种卷积神经网络方法,其包含:决定一暂时缓冲层,其位于卷积神经网络系统的第一层与最终层之间;于第一阶段,从卷积神经网络系统的第一层至暂时缓冲层,根据该暂时缓冲层之前层级的部分输入数据,执行卷积操作以产生一特征图线;及于第二阶段,从卷积神经网络系统的暂时缓冲层至最终层,执行卷积操作以产生一特征图。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB2zs8ry88pLcnMz0vMUchLLS0CUyXl-UXZCsWVxSWpuTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fagh3tnP0NDIwNTI0tjU0ZgYNQAlQCcF</recordid><startdate>20201208</startdate><enddate>20201208</enddate><creator>LIN YUNSHENG</creator><creator>TANG DIWEN</creator><scope>EVB</scope></search><sort><creationdate>20201208</creationdate><title>Convolutional neural network system</title><author>LIN YUNSHENG ; TANG DIWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112052935A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN YUNSHENG</creatorcontrib><creatorcontrib>TANG DIWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN YUNSHENG</au><au>TANG DIWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Convolutional neural network system</title><date>2020-12-08</date><risdate>2020</risdate><abstract>A convolutional neural network method includes: determining a temporary buffer layer between a first layer and a final layer of a convolutional neural network system; in a first stage, convolution operation is executed from a first layer to a temporary buffer layer of the convolutional neural network system according to part of input data of a previous level of the temporary buffer layer so as togenerate a feature map line; and in the second stage, executing convolution operation from the temporary buffer layer to the final layer of the convolutional neural network system to generate a feature map. 一种卷积神经网络方法,其包含:决定一暂时缓冲层,其位于卷积神经网络系统的第一层与最终层之间;于第一阶段,从卷积神经网络系统的第一层至暂时缓冲层,根据该暂时缓冲层之前层级的部分输入数据,执行卷积操作以产生一特征图线;及于第二阶段,从卷积神经网络系统的暂时缓冲层至最终层,执行卷积操作以产生一特征图。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112052935A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Convolutional neural network system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20YUNSHENG&rft.date=2020-12-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112052935A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true