Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization
The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-parti...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MA JINGMIN TIAN XIANGRUI CHEN ZEWANG YAO RUI ZENG QINGXI ZOU KECHEN ZHOU ZHAIHE |
description | The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-particle state. According to the method, Gaussian particle filtering is used as a framework, an artificial fish swarm algorithm is fused, and foraging behaviors and clustering behaviors are used for optimizing weights. According to the method, traditional sampling is replaced by linear transformation, the weight is optimized according to the measurement value and the weight calculation formula, the calculation speed is guaranteed while the calculation precision is improved, and the method is suitablefor application occasions such as state estimation of a nonlinear dynamic system.
本发明提出的一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法,属于信号处理技术领域,主要用于解决粒子滤波器的多粒子状态下产生巨大的计算工作量及精度不高的问题,该方法以高斯粒子滤波为框架,融合人工鱼群算法,使用觅食行为和聚群行为对权值进行优化。本发明以线性变换代替传统采样,根据量测值 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112039496A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112039496A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112039496A3</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheFsXIh6h_EAgrUidFmK1ZUrl0IZ0wkdSJuQmSJ4eiN4AFePH763NI8WReGCswjjBBGTsvUEjr1Sgh4Vwc3CYYKRdAg9PFGoh9xf6tgy-qxlAHlhGiFE5ZHfqPmyNguHXmjz25XZtud7c91RDB1JREsTadfciuKwL6tjdarLf8wHt888Cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization</title><source>esp@cenet</source><creator>MA JINGMIN ; TIAN XIANGRUI ; CHEN ZEWANG ; YAO RUI ; ZENG QINGXI ; ZOU KECHEN ; ZHOU ZHAIHE</creator><creatorcontrib>MA JINGMIN ; TIAN XIANGRUI ; CHEN ZEWANG ; YAO RUI ; ZENG QINGXI ; ZOU KECHEN ; ZHOU ZHAIHE</creatorcontrib><description>The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-particle state. According to the method, Gaussian particle filtering is used as a framework, an artificial fish swarm algorithm is fused, and foraging behaviors and clustering behaviors are used for optimizing weights. According to the method, traditional sampling is replaced by linear transformation, the weight is optimized according to the measurement value and the weight calculation formula, the calculation speed is guaranteed while the calculation precision is improved, and the method is suitablefor application occasions such as state estimation of a nonlinear dynamic system.
本发明提出的一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法,属于信号处理技术领域,主要用于解决粒子滤波器的多粒子状态下产生巨大的计算工作量及精度不高的问题,该方法以高斯粒子滤波为框架,融合人工鱼群算法,使用觅食行为和聚群行为对权值进行优化。本发明以线性变换代替传统采样,根据量测值</description><language>chi ; eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; ELECTRICITY ; IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS ; RESONATORS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201204&DB=EPODOC&CC=CN&NR=112039496A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201204&DB=EPODOC&CC=CN&NR=112039496A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA JINGMIN</creatorcontrib><creatorcontrib>TIAN XIANGRUI</creatorcontrib><creatorcontrib>CHEN ZEWANG</creatorcontrib><creatorcontrib>YAO RUI</creatorcontrib><creatorcontrib>ZENG QINGXI</creatorcontrib><creatorcontrib>ZOU KECHEN</creatorcontrib><creatorcontrib>ZHOU ZHAIHE</creatorcontrib><title>Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization</title><description>The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-particle state. According to the method, Gaussian particle filtering is used as a framework, an artificial fish swarm algorithm is fused, and foraging behaviors and clustering behaviors are used for optimizing weights. According to the method, traditional sampling is replaced by linear transformation, the weight is optimized according to the measurement value and the weight calculation formula, the calculation speed is guaranteed while the calculation precision is improved, and the method is suitablefor application occasions such as state estimation of a nonlinear dynamic system.
本发明提出的一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法,属于信号处理技术领域,主要用于解决粒子滤波器的多粒子状态下产生巨大的计算工作量及精度不高的问题,该方法以高斯粒子滤波为框架,融合人工鱼群算法,使用觅食行为和聚群行为对权值进行优化。本发明以线性变换代替传统采样,根据量测值</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>ELECTRICITY</subject><subject>IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS</subject><subject>RESONATORS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQheFsXIh6h_EAgrUidFmK1ZUrl0IZ0wkdSJuQmSJ4eiN4AFePH763NI8WReGCswjjBBGTsvUEjr1Sgh4Vwc3CYYKRdAg9PFGoh9xf6tgy-qxlAHlhGiFE5ZHfqPmyNguHXmjz25XZtud7c91RDB1JREsTadfciuKwL6tjdarLf8wHt888Cg</recordid><startdate>20201204</startdate><enddate>20201204</enddate><creator>MA JINGMIN</creator><creator>TIAN XIANGRUI</creator><creator>CHEN ZEWANG</creator><creator>YAO RUI</creator><creator>ZENG QINGXI</creator><creator>ZOU KECHEN</creator><creator>ZHOU ZHAIHE</creator><scope>EVB</scope></search><sort><creationdate>20201204</creationdate><title>Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization</title><author>MA JINGMIN ; TIAN XIANGRUI ; CHEN ZEWANG ; YAO RUI ; ZENG QINGXI ; ZOU KECHEN ; ZHOU ZHAIHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112039496A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>ELECTRICITY</topic><topic>IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS</topic><topic>RESONATORS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA JINGMIN</creatorcontrib><creatorcontrib>TIAN XIANGRUI</creatorcontrib><creatorcontrib>CHEN ZEWANG</creatorcontrib><creatorcontrib>YAO RUI</creatorcontrib><creatorcontrib>ZENG QINGXI</creatorcontrib><creatorcontrib>ZOU KECHEN</creatorcontrib><creatorcontrib>ZHOU ZHAIHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA JINGMIN</au><au>TIAN XIANGRUI</au><au>CHEN ZEWANG</au><au>YAO RUI</au><au>ZENG QINGXI</au><au>ZOU KECHEN</au><au>ZHOU ZHAIHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization</title><date>2020-12-04</date><risdate>2020</risdate><abstract>The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-particle state. According to the method, Gaussian particle filtering is used as a framework, an artificial fish swarm algorithm is fused, and foraging behaviors and clustering behaviors are used for optimizing weights. According to the method, traditional sampling is replaced by linear transformation, the weight is optimized according to the measurement value and the weight calculation formula, the calculation speed is guaranteed while the calculation precision is improved, and the method is suitablefor application occasions such as state estimation of a nonlinear dynamic system.
本发明提出的一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法,属于信号处理技术领域,主要用于解决粒子滤波器的多粒子状态下产生巨大的计算工作量及精度不高的问题,该方法以高斯粒子滤波为框架,融合人工鱼群算法,使用觅食行为和聚群行为对权值进行优化。本发明以线性变换代替传统采样,根据量测值</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112039496A |
source | esp@cenet |
subjects | BASIC ELECTRONIC CIRCUITRY ELECTRICITY IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS RESONATORS |
title | Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20JINGMIN&rft.date=2020-12-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112039496A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |