Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization

The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA JINGMIN, TIAN XIANGRUI, CHEN ZEWANG, YAO RUI, ZENG QINGXI, ZOU KECHEN, ZHOU ZHAIHE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA JINGMIN
TIAN XIANGRUI
CHEN ZEWANG
YAO RUI
ZENG QINGXI
ZOU KECHEN
ZHOU ZHAIHE
description The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-particle state. According to the method, Gaussian particle filtering is used as a framework, an artificial fish swarm algorithm is fused, and foraging behaviors and clustering behaviors are used for optimizing weights. According to the method, traditional sampling is replaced by linear transformation, the weight is optimized according to the measurement value and the weight calculation formula, the calculation speed is guaranteed while the calculation precision is improved, and the method is suitablefor application occasions such as state estimation of a nonlinear dynamic system. 本发明提出的一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法,属于信号处理技术领域,主要用于解决粒子滤波器的多粒子状态下产生巨大的计算工作量及精度不高的问题,该方法以高斯粒子滤波为框架,融合人工鱼群算法,使用觅食行为和聚群行为对权值进行优化。本发明以线性变换代替传统采样,根据量测值
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112039496A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112039496A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112039496A3</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheFsXIh6h_EAgrUidFmK1ZUrl0IZ0wkdSJuQmSJ4eiN4AFePH763NI8WReGCswjjBBGTsvUEjr1Sgh4Vwc3CYYKRdAg9PFGoh9xf6tgy-qxlAHlhGiFE5ZHfqPmyNguHXmjz25XZtud7c91RDB1JREsTadfciuKwL6tjdarLf8wHt888Cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization</title><source>esp@cenet</source><creator>MA JINGMIN ; TIAN XIANGRUI ; CHEN ZEWANG ; YAO RUI ; ZENG QINGXI ; ZOU KECHEN ; ZHOU ZHAIHE</creator><creatorcontrib>MA JINGMIN ; TIAN XIANGRUI ; CHEN ZEWANG ; YAO RUI ; ZENG QINGXI ; ZOU KECHEN ; ZHOU ZHAIHE</creatorcontrib><description>The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-particle state. According to the method, Gaussian particle filtering is used as a framework, an artificial fish swarm algorithm is fused, and foraging behaviors and clustering behaviors are used for optimizing weights. According to the method, traditional sampling is replaced by linear transformation, the weight is optimized according to the measurement value and the weight calculation formula, the calculation speed is guaranteed while the calculation precision is improved, and the method is suitablefor application occasions such as state estimation of a nonlinear dynamic system. 本发明提出的一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法,属于信号处理技术领域,主要用于解决粒子滤波器的多粒子状态下产生巨大的计算工作量及精度不高的问题,该方法以高斯粒子滤波为框架,融合人工鱼群算法,使用觅食行为和聚群行为对权值进行优化。本发明以线性变换代替传统采样,根据量测值</description><language>chi ; eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; ELECTRICITY ; IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS ; RESONATORS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201204&amp;DB=EPODOC&amp;CC=CN&amp;NR=112039496A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201204&amp;DB=EPODOC&amp;CC=CN&amp;NR=112039496A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA JINGMIN</creatorcontrib><creatorcontrib>TIAN XIANGRUI</creatorcontrib><creatorcontrib>CHEN ZEWANG</creatorcontrib><creatorcontrib>YAO RUI</creatorcontrib><creatorcontrib>ZENG QINGXI</creatorcontrib><creatorcontrib>ZOU KECHEN</creatorcontrib><creatorcontrib>ZHOU ZHAIHE</creatorcontrib><title>Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization</title><description>The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-particle state. According to the method, Gaussian particle filtering is used as a framework, an artificial fish swarm algorithm is fused, and foraging behaviors and clustering behaviors are used for optimizing weights. According to the method, traditional sampling is replaced by linear transformation, the weight is optimized according to the measurement value and the weight calculation formula, the calculation speed is guaranteed while the calculation precision is improved, and the method is suitablefor application occasions such as state estimation of a nonlinear dynamic system. 本发明提出的一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法,属于信号处理技术领域,主要用于解决粒子滤波器的多粒子状态下产生巨大的计算工作量及精度不高的问题,该方法以高斯粒子滤波为框架,融合人工鱼群算法,使用觅食行为和聚群行为对权值进行优化。本发明以线性变换代替传统采样,根据量测值</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>ELECTRICITY</subject><subject>IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS</subject><subject>RESONATORS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQheFsXIh6h_EAgrUidFmK1ZUrl0IZ0wkdSJuQmSJ4eiN4AFePH763NI8WReGCswjjBBGTsvUEjr1Sgh4Vwc3CYYKRdAg9PFGoh9xf6tgy-qxlAHlhGiFE5ZHfqPmyNguHXmjz25XZtud7c91RDB1JREsTadfciuKwL6tjdarLf8wHt888Cg</recordid><startdate>20201204</startdate><enddate>20201204</enddate><creator>MA JINGMIN</creator><creator>TIAN XIANGRUI</creator><creator>CHEN ZEWANG</creator><creator>YAO RUI</creator><creator>ZENG QINGXI</creator><creator>ZOU KECHEN</creator><creator>ZHOU ZHAIHE</creator><scope>EVB</scope></search><sort><creationdate>20201204</creationdate><title>Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization</title><author>MA JINGMIN ; TIAN XIANGRUI ; CHEN ZEWANG ; YAO RUI ; ZENG QINGXI ; ZOU KECHEN ; ZHOU ZHAIHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112039496A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>ELECTRICITY</topic><topic>IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS</topic><topic>RESONATORS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA JINGMIN</creatorcontrib><creatorcontrib>TIAN XIANGRUI</creatorcontrib><creatorcontrib>CHEN ZEWANG</creatorcontrib><creatorcontrib>YAO RUI</creatorcontrib><creatorcontrib>ZENG QINGXI</creatorcontrib><creatorcontrib>ZOU KECHEN</creatorcontrib><creatorcontrib>ZHOU ZHAIHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA JINGMIN</au><au>TIAN XIANGRUI</au><au>CHEN ZEWANG</au><au>YAO RUI</au><au>ZENG QINGXI</au><au>ZOU KECHEN</au><au>ZHOU ZHAIHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization</title><date>2020-12-04</date><risdate>2020</risdate><abstract>The invention provides a fast Gaussian particle filter data fusion method based on artificial fish swarm optimization, belongs to the technical field of signal processing, and is mainly used for solving the problems of huge calculation workload and low precision of a particle filter in a multi-particle state. According to the method, Gaussian particle filtering is used as a framework, an artificial fish swarm algorithm is fused, and foraging behaviors and clustering behaviors are used for optimizing weights. According to the method, traditional sampling is replaced by linear transformation, the weight is optimized according to the measurement value and the weight calculation formula, the calculation speed is guaranteed while the calculation precision is improved, and the method is suitablefor application occasions such as state estimation of a nonlinear dynamic system. 本发明提出的一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法,属于信号处理技术领域,主要用于解决粒子滤波器的多粒子状态下产生巨大的计算工作量及精度不高的问题,该方法以高斯粒子滤波为框架,融合人工鱼群算法,使用觅食行为和聚群行为对权值进行优化。本发明以线性变换代替传统采样,根据量测值</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112039496A
source esp@cenet
subjects BASIC ELECTRONIC CIRCUITRY
ELECTRICITY
IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS
RESONATORS
title Fast Gaussian particle filter data fusion method based on artificial fish swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20JINGMIN&rft.date=2020-12-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112039496A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true