Allocation of machine learning tasks into a shared cache

The present invention relates to allocation of machine learning tasks into a shared cache. The subject technology receives code corresponding to a neural network (NN) model, the code including particular operations that are performed by the NN model. The subject technology determines, among the part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIAOZHONG YAO, CECILE M. FORET, SUNDARARAMAN HARIHARASUBRAMANIAN, FABIAN P. WANNER
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIAOZHONG YAO
CECILE M. FORET
SUNDARARAMAN HARIHARASUBRAMANIAN
FABIAN P. WANNER
description The present invention relates to allocation of machine learning tasks into a shared cache. The subject technology receives code corresponding to a neural network (NN) model, the code including particular operations that are performed by the NN model. The subject technology determines, among the particular operations, a set of operations that are to be allocated to a cache of the electronic devicethat is to execute the NN model. The subject technology generates a set of cache indicators corresponding to the determined set of operations. The subject technology compiles the code and the generated set of cache indicators to provide a compiled binary for the NN model to execute on a target device. 本公开涉及机器学习任务到共享高速缓存中的分配。本主题技术接收对应于神经网络(NN)模型的代码,所述代码包括由NN模型执行的特定操作。在所述特定操作中,本主题技术确定将分配给要执行所述NN模型的电子设备的高速缓存的一组操作。本主题技术生成对应于所述确定的一组操作的一组高速缓存指示器。本主题技术编译所述代码和所述生成的一组高速缓存指示器,以提供用于所述NN模型的编译的二进制文件以在目标设备上执行。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112015675A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112015675A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112015675A3</originalsourceid><addsrcrecordid>eNrjZLBwzMnJT04syczPU8hPU8hNTM7IzEtVyElNLMrLzEtXKEkszi5WyMwryVdIVCjOSCxKTVFIBipK5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoZGBoamZuamjsbEqAEA1bEtww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Allocation of machine learning tasks into a shared cache</title><source>esp@cenet</source><creator>XIAOZHONG YAO ; CECILE M. FORET ; SUNDARARAMAN HARIHARASUBRAMANIAN ; FABIAN P. WANNER</creator><creatorcontrib>XIAOZHONG YAO ; CECILE M. FORET ; SUNDARARAMAN HARIHARASUBRAMANIAN ; FABIAN P. WANNER</creatorcontrib><description>The present invention relates to allocation of machine learning tasks into a shared cache. The subject technology receives code corresponding to a neural network (NN) model, the code including particular operations that are performed by the NN model. The subject technology determines, among the particular operations, a set of operations that are to be allocated to a cache of the electronic devicethat is to execute the NN model. The subject technology generates a set of cache indicators corresponding to the determined set of operations. The subject technology compiles the code and the generated set of cache indicators to provide a compiled binary for the NN model to execute on a target device. 本公开涉及机器学习任务到共享高速缓存中的分配。本主题技术接收对应于神经网络(NN)模型的代码,所述代码包括由NN模型执行的特定操作。在所述特定操作中,本主题技术确定将分配给要执行所述NN模型的电子设备的高速缓存的一组操作。本主题技术生成对应于所述确定的一组操作的一组高速缓存指示器。本主题技术编译所述代码和所述生成的一组高速缓存指示器,以提供用于所述NN模型的编译的二进制文件以在目标设备上执行。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201201&amp;DB=EPODOC&amp;CC=CN&amp;NR=112015675A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201201&amp;DB=EPODOC&amp;CC=CN&amp;NR=112015675A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAOZHONG YAO</creatorcontrib><creatorcontrib>CECILE M. FORET</creatorcontrib><creatorcontrib>SUNDARARAMAN HARIHARASUBRAMANIAN</creatorcontrib><creatorcontrib>FABIAN P. WANNER</creatorcontrib><title>Allocation of machine learning tasks into a shared cache</title><description>The present invention relates to allocation of machine learning tasks into a shared cache. The subject technology receives code corresponding to a neural network (NN) model, the code including particular operations that are performed by the NN model. The subject technology determines, among the particular operations, a set of operations that are to be allocated to a cache of the electronic devicethat is to execute the NN model. The subject technology generates a set of cache indicators corresponding to the determined set of operations. The subject technology compiles the code and the generated set of cache indicators to provide a compiled binary for the NN model to execute on a target device. 本公开涉及机器学习任务到共享高速缓存中的分配。本主题技术接收对应于神经网络(NN)模型的代码,所述代码包括由NN模型执行的特定操作。在所述特定操作中,本主题技术确定将分配给要执行所述NN模型的电子设备的高速缓存的一组操作。本主题技术生成对应于所述确定的一组操作的一组高速缓存指示器。本主题技术编译所述代码和所述生成的一组高速缓存指示器,以提供用于所述NN模型的编译的二进制文件以在目标设备上执行。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBwzMnJT04syczPU8hPU8hNTM7IzEtVyElNLMrLzEtXKEkszi5WyMwryVdIVCjOSCxKTVFIBipK5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoZGBoamZuamjsbEqAEA1bEtww</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>XIAOZHONG YAO</creator><creator>CECILE M. FORET</creator><creator>SUNDARARAMAN HARIHARASUBRAMANIAN</creator><creator>FABIAN P. WANNER</creator><scope>EVB</scope></search><sort><creationdate>20201201</creationdate><title>Allocation of machine learning tasks into a shared cache</title><author>XIAOZHONG YAO ; CECILE M. FORET ; SUNDARARAMAN HARIHARASUBRAMANIAN ; FABIAN P. WANNER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112015675A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAOZHONG YAO</creatorcontrib><creatorcontrib>CECILE M. FORET</creatorcontrib><creatorcontrib>SUNDARARAMAN HARIHARASUBRAMANIAN</creatorcontrib><creatorcontrib>FABIAN P. WANNER</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAOZHONG YAO</au><au>CECILE M. FORET</au><au>SUNDARARAMAN HARIHARASUBRAMANIAN</au><au>FABIAN P. WANNER</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Allocation of machine learning tasks into a shared cache</title><date>2020-12-01</date><risdate>2020</risdate><abstract>The present invention relates to allocation of machine learning tasks into a shared cache. The subject technology receives code corresponding to a neural network (NN) model, the code including particular operations that are performed by the NN model. The subject technology determines, among the particular operations, a set of operations that are to be allocated to a cache of the electronic devicethat is to execute the NN model. The subject technology generates a set of cache indicators corresponding to the determined set of operations. The subject technology compiles the code and the generated set of cache indicators to provide a compiled binary for the NN model to execute on a target device. 本公开涉及机器学习任务到共享高速缓存中的分配。本主题技术接收对应于神经网络(NN)模型的代码,所述代码包括由NN模型执行的特定操作。在所述特定操作中,本主题技术确定将分配给要执行所述NN模型的电子设备的高速缓存的一组操作。本主题技术生成对应于所述确定的一组操作的一组高速缓存指示器。本主题技术编译所述代码和所述生成的一组高速缓存指示器,以提供用于所述NN模型的编译的二进制文件以在目标设备上执行。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112015675A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Allocation of machine learning tasks into a shared cache
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAOZHONG%20YAO&rft.date=2020-12-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112015675A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true