Early fault detection method for variable-speed elevator

The invention discloses an early fault detection method for a variable-speed elevator. The method comprises steps of estimating the instantaneous rotating speed of the variable-speed elevator by usinga CPP method; performing equal-angle sampling on the vibration signal; eliminating the influence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PAN JIANHAN, TANG XIAN, REN SHIJIN, JI TIANYUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PAN JIANHAN
TANG XIAN
REN SHIJIN
JI TIANYUAN
description The invention discloses an early fault detection method for a variable-speed elevator. The method comprises steps of estimating the instantaneous rotating speed of the variable-speed elevator by usinga CPP method; performing equal-angle sampling on the vibration signal; eliminating the influence of the speed on a fault-related vibration signal; solving an optimal model parameter; extracting weakfault impact characteristics from vibration signals in a self-adaptive mode. The problem that the fault impact characteristics are not obvious due to improper parameter setting is avoided, successfulapplication of DCNN and deep residual learning in fault diagnosis is considered, residual connection is fused into the DCNN, and the fault classification performance of a DCNN model is improved. Extracting time domain and frequency domain features from the filtering signals respectively; instantaneous frequency and amplitude characteristics and a Hilbert spectrum of a signal envelope are extractedon the basis of a Teager op
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112001314A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112001314A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112001314A3</originalsourceid><addsrcrecordid>eNrjZLBwTSzKqVRISyzNKVFISS1JTS7JzM9TyE0tychPUUjLL1IoSyzKTEzKSdUtLkhNTVFIzUktSyzJL-JhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGRgYGhsaGJo7GxKgBAA3PLj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Early fault detection method for variable-speed elevator</title><source>esp@cenet</source><creator>PAN JIANHAN ; TANG XIAN ; REN SHIJIN ; JI TIANYUAN</creator><creatorcontrib>PAN JIANHAN ; TANG XIAN ; REN SHIJIN ; JI TIANYUAN</creatorcontrib><description>The invention discloses an early fault detection method for a variable-speed elevator. The method comprises steps of estimating the instantaneous rotating speed of the variable-speed elevator by usinga CPP method; performing equal-angle sampling on the vibration signal; eliminating the influence of the speed on a fault-related vibration signal; solving an optimal model parameter; extracting weakfault impact characteristics from vibration signals in a self-adaptive mode. The problem that the fault impact characteristics are not obvious due to improper parameter setting is avoided, successfulapplication of DCNN and deep residual learning in fault diagnosis is considered, residual connection is fused into the DCNN, and the fault classification performance of a DCNN model is improved. Extracting time domain and frequency domain features from the filtering signals respectively; instantaneous frequency and amplitude characteristics and a Hilbert spectrum of a signal envelope are extractedon the basis of a Teager op</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201127&amp;DB=EPODOC&amp;CC=CN&amp;NR=112001314A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201127&amp;DB=EPODOC&amp;CC=CN&amp;NR=112001314A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PAN JIANHAN</creatorcontrib><creatorcontrib>TANG XIAN</creatorcontrib><creatorcontrib>REN SHIJIN</creatorcontrib><creatorcontrib>JI TIANYUAN</creatorcontrib><title>Early fault detection method for variable-speed elevator</title><description>The invention discloses an early fault detection method for a variable-speed elevator. The method comprises steps of estimating the instantaneous rotating speed of the variable-speed elevator by usinga CPP method; performing equal-angle sampling on the vibration signal; eliminating the influence of the speed on a fault-related vibration signal; solving an optimal model parameter; extracting weakfault impact characteristics from vibration signals in a self-adaptive mode. The problem that the fault impact characteristics are not obvious due to improper parameter setting is avoided, successfulapplication of DCNN and deep residual learning in fault diagnosis is considered, residual connection is fused into the DCNN, and the fault classification performance of a DCNN model is improved. Extracting time domain and frequency domain features from the filtering signals respectively; instantaneous frequency and amplitude characteristics and a Hilbert spectrum of a signal envelope are extractedon the basis of a Teager op</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBwTSzKqVRISyzNKVFISS1JTS7JzM9TyE0tychPUUjLL1IoSyzKTEzKSdUtLkhNTVFIzUktSyzJL-JhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGRgYGhsaGJo7GxKgBAA3PLj8</recordid><startdate>20201127</startdate><enddate>20201127</enddate><creator>PAN JIANHAN</creator><creator>TANG XIAN</creator><creator>REN SHIJIN</creator><creator>JI TIANYUAN</creator><scope>EVB</scope></search><sort><creationdate>20201127</creationdate><title>Early fault detection method for variable-speed elevator</title><author>PAN JIANHAN ; TANG XIAN ; REN SHIJIN ; JI TIANYUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112001314A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>PAN JIANHAN</creatorcontrib><creatorcontrib>TANG XIAN</creatorcontrib><creatorcontrib>REN SHIJIN</creatorcontrib><creatorcontrib>JI TIANYUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PAN JIANHAN</au><au>TANG XIAN</au><au>REN SHIJIN</au><au>JI TIANYUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Early fault detection method for variable-speed elevator</title><date>2020-11-27</date><risdate>2020</risdate><abstract>The invention discloses an early fault detection method for a variable-speed elevator. The method comprises steps of estimating the instantaneous rotating speed of the variable-speed elevator by usinga CPP method; performing equal-angle sampling on the vibration signal; eliminating the influence of the speed on a fault-related vibration signal; solving an optimal model parameter; extracting weakfault impact characteristics from vibration signals in a self-adaptive mode. The problem that the fault impact characteristics are not obvious due to improper parameter setting is avoided, successfulapplication of DCNN and deep residual learning in fault diagnosis is considered, residual connection is fused into the DCNN, and the fault classification performance of a DCNN model is improved. Extracting time domain and frequency domain features from the filtering signals respectively; instantaneous frequency and amplitude characteristics and a Hilbert spectrum of a signal envelope are extractedon the basis of a Teager op</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112001314A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Early fault detection method for variable-speed elevator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PAN%20JIANHAN&rft.date=2020-11-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112001314A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true