Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network
The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG XUNING HUANG LEI MENG LINGQIANG LIAO GUANGLAN FU GUANGHUI SUN BO ZHAO JIDING HAN HANGDI SI SHUNCHENG HAN JINGHUI |
description | The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in Tiny_YOLOv3 by using a Mobileet network, replacing seven convolution and maximum pooling network layers in a Tiny _ YOLOv3 backbone network by using a lightweight network Mobileet to obtain an improved Tiny_YOLOv3 network; (2) inputting a welding spot infrared image with a known defect type into the improved Tiny_YOLOv3 network as a training data set of a sample so as to train and learn the improved Tiny_YOLOv3 network, thereby obtaining an improved Tiny _ YOLOv3 network model; and (3) inputting the infrared image of the welding spot sample to be detected into the improved Tiny_YOLOv3 network model so as to complete the detection of the welding spot defects. The spaceflight electronic welding spot defect detection |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111986187A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111986187A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111986187A3</originalsourceid><addsrcrecordid>eNrjZEgMLkhMTk3LyUzPKFFIzUlNLinKz8tMVihPzUnJzEtXKC7IL1FISU0DSgCpEiCVmZ-nkJtakpGfopCUWJyaogDkZ-YWFOWXAdkhmXmVupH-Pv5lxgp5qSXl-UXZPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tRhkPVBlvLOfoaGhpYWZoYW5ozExagAcrz2y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network</title><source>esp@cenet</source><creator>ZHANG XUNING ; HUANG LEI ; MENG LINGQIANG ; LIAO GUANGLAN ; FU GUANGHUI ; SUN BO ; ZHAO JIDING ; HAN HANGDI ; SI SHUNCHENG ; HAN JINGHUI</creator><creatorcontrib>ZHANG XUNING ; HUANG LEI ; MENG LINGQIANG ; LIAO GUANGLAN ; FU GUANGHUI ; SUN BO ; ZHAO JIDING ; HAN HANGDI ; SI SHUNCHENG ; HAN JINGHUI</creatorcontrib><description>The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in Tiny_YOLOv3 by using a Mobileet network, replacing seven convolution and maximum pooling network layers in a Tiny _ YOLOv3 backbone network by using a lightweight network Mobileet to obtain an improved Tiny_YOLOv3 network; (2) inputting a welding spot infrared image with a known defect type into the improved Tiny_YOLOv3 network as a training data set of a sample so as to train and learn the improved Tiny_YOLOv3 network, thereby obtaining an improved Tiny _ YOLOv3 network model; and (3) inputting the infrared image of the welding spot sample to be detected into the improved Tiny_YOLOv3 network model so as to complete the detection of the welding spot defects. The spaceflight electronic welding spot defect detection</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201124&DB=EPODOC&CC=CN&NR=111986187A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201124&DB=EPODOC&CC=CN&NR=111986187A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG XUNING</creatorcontrib><creatorcontrib>HUANG LEI</creatorcontrib><creatorcontrib>MENG LINGQIANG</creatorcontrib><creatorcontrib>LIAO GUANGLAN</creatorcontrib><creatorcontrib>FU GUANGHUI</creatorcontrib><creatorcontrib>SUN BO</creatorcontrib><creatorcontrib>ZHAO JIDING</creatorcontrib><creatorcontrib>HAN HANGDI</creatorcontrib><creatorcontrib>SI SHUNCHENG</creatorcontrib><creatorcontrib>HAN JINGHUI</creatorcontrib><title>Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network</title><description>The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in Tiny_YOLOv3 by using a Mobileet network, replacing seven convolution and maximum pooling network layers in a Tiny _ YOLOv3 backbone network by using a lightweight network Mobileet to obtain an improved Tiny_YOLOv3 network; (2) inputting a welding spot infrared image with a known defect type into the improved Tiny_YOLOv3 network as a training data set of a sample so as to train and learn the improved Tiny_YOLOv3 network, thereby obtaining an improved Tiny _ YOLOv3 network model; and (3) inputting the infrared image of the welding spot sample to be detected into the improved Tiny_YOLOv3 network model so as to complete the detection of the welding spot defects. The spaceflight electronic welding spot defect detection</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEgMLkhMTk3LyUzPKFFIzUlNLinKz8tMVihPzUnJzEtXKC7IL1FISU0DSgCpEiCVmZ-nkJtakpGfopCUWJyaogDkZ-YWFOWXAdkhmXmVupH-Pv5lxgp5qSXl-UXZPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tRhkPVBlvLOfoaGhpYWZoYW5ozExagAcrz2y</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>ZHANG XUNING</creator><creator>HUANG LEI</creator><creator>MENG LINGQIANG</creator><creator>LIAO GUANGLAN</creator><creator>FU GUANGHUI</creator><creator>SUN BO</creator><creator>ZHAO JIDING</creator><creator>HAN HANGDI</creator><creator>SI SHUNCHENG</creator><creator>HAN JINGHUI</creator><scope>EVB</scope></search><sort><creationdate>20201124</creationdate><title>Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network</title><author>ZHANG XUNING ; HUANG LEI ; MENG LINGQIANG ; LIAO GUANGLAN ; FU GUANGHUI ; SUN BO ; ZHAO JIDING ; HAN HANGDI ; SI SHUNCHENG ; HAN JINGHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111986187A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG XUNING</creatorcontrib><creatorcontrib>HUANG LEI</creatorcontrib><creatorcontrib>MENG LINGQIANG</creatorcontrib><creatorcontrib>LIAO GUANGLAN</creatorcontrib><creatorcontrib>FU GUANGHUI</creatorcontrib><creatorcontrib>SUN BO</creatorcontrib><creatorcontrib>ZHAO JIDING</creatorcontrib><creatorcontrib>HAN HANGDI</creatorcontrib><creatorcontrib>SI SHUNCHENG</creatorcontrib><creatorcontrib>HAN JINGHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG XUNING</au><au>HUANG LEI</au><au>MENG LINGQIANG</au><au>LIAO GUANGLAN</au><au>FU GUANGHUI</au><au>SUN BO</au><au>ZHAO JIDING</au><au>HAN HANGDI</au><au>SI SHUNCHENG</au><au>HAN JINGHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network</title><date>2020-11-24</date><risdate>2020</risdate><abstract>The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in Tiny_YOLOv3 by using a Mobileet network, replacing seven convolution and maximum pooling network layers in a Tiny _ YOLOv3 backbone network by using a lightweight network Mobileet to obtain an improved Tiny_YOLOv3 network; (2) inputting a welding spot infrared image with a known defect type into the improved Tiny_YOLOv3 network as a training data set of a sample so as to train and learn the improved Tiny_YOLOv3 network, thereby obtaining an improved Tiny _ YOLOv3 network model; and (3) inputting the infrared image of the welding spot sample to be detected into the improved Tiny_YOLOv3 network model so as to complete the detection of the welding spot defects. The spaceflight electronic welding spot defect detection</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111986187A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20XUNING&rft.date=2020-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111986187A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |