Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network

The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG XUNING, HUANG LEI, MENG LINGQIANG, LIAO GUANGLAN, FU GUANGHUI, SUN BO, ZHAO JIDING, HAN HANGDI, SI SHUNCHENG, HAN JINGHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG XUNING
HUANG LEI
MENG LINGQIANG
LIAO GUANGLAN
FU GUANGHUI
SUN BO
ZHAO JIDING
HAN HANGDI
SI SHUNCHENG
HAN JINGHUI
description The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in Tiny_YOLOv3 by using a Mobileet network, replacing seven convolution and maximum pooling network layers in a Tiny _ YOLOv3 backbone network by using a lightweight network Mobileet to obtain an improved Tiny_YOLOv3 network; (2) inputting a welding spot infrared image with a known defect type into the improved Tiny_YOLOv3 network as a training data set of a sample so as to train and learn the improved Tiny_YOLOv3 network, thereby obtaining an improved Tiny _ YOLOv3 network model; and (3) inputting the infrared image of the welding spot sample to be detected into the improved Tiny_YOLOv3 network model so as to complete the detection of the welding spot defects. The spaceflight electronic welding spot defect detection
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111986187A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111986187A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111986187A3</originalsourceid><addsrcrecordid>eNrjZEgMLkhMTk3LyUzPKFFIzUlNLinKz8tMVihPzUnJzEtXKC7IL1FISU0DSgCpEiCVmZ-nkJtakpGfopCUWJyaogDkZ-YWFOWXAdkhmXmVupH-Pv5lxgp5qSXl-UXZPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tRhkPVBlvLOfoaGhpYWZoYW5ozExagAcrz2y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network</title><source>esp@cenet</source><creator>ZHANG XUNING ; HUANG LEI ; MENG LINGQIANG ; LIAO GUANGLAN ; FU GUANGHUI ; SUN BO ; ZHAO JIDING ; HAN HANGDI ; SI SHUNCHENG ; HAN JINGHUI</creator><creatorcontrib>ZHANG XUNING ; HUANG LEI ; MENG LINGQIANG ; LIAO GUANGLAN ; FU GUANGHUI ; SUN BO ; ZHAO JIDING ; HAN HANGDI ; SI SHUNCHENG ; HAN JINGHUI</creatorcontrib><description>The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in Tiny_YOLOv3 by using a Mobileet network, replacing seven convolution and maximum pooling network layers in a Tiny _ YOLOv3 backbone network by using a lightweight network Mobileet to obtain an improved Tiny_YOLOv3 network; (2) inputting a welding spot infrared image with a known defect type into the improved Tiny_YOLOv3 network as a training data set of a sample so as to train and learn the improved Tiny_YOLOv3 network, thereby obtaining an improved Tiny _ YOLOv3 network model; and (3) inputting the infrared image of the welding spot sample to be detected into the improved Tiny_YOLOv3 network model so as to complete the detection of the welding spot defects. The spaceflight electronic welding spot defect detection</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201124&amp;DB=EPODOC&amp;CC=CN&amp;NR=111986187A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201124&amp;DB=EPODOC&amp;CC=CN&amp;NR=111986187A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG XUNING</creatorcontrib><creatorcontrib>HUANG LEI</creatorcontrib><creatorcontrib>MENG LINGQIANG</creatorcontrib><creatorcontrib>LIAO GUANGLAN</creatorcontrib><creatorcontrib>FU GUANGHUI</creatorcontrib><creatorcontrib>SUN BO</creatorcontrib><creatorcontrib>ZHAO JIDING</creatorcontrib><creatorcontrib>HAN HANGDI</creatorcontrib><creatorcontrib>SI SHUNCHENG</creatorcontrib><creatorcontrib>HAN JINGHUI</creatorcontrib><title>Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network</title><description>The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in Tiny_YOLOv3 by using a Mobileet network, replacing seven convolution and maximum pooling network layers in a Tiny _ YOLOv3 backbone network by using a lightweight network Mobileet to obtain an improved Tiny_YOLOv3 network; (2) inputting a welding spot infrared image with a known defect type into the improved Tiny_YOLOv3 network as a training data set of a sample so as to train and learn the improved Tiny_YOLOv3 network, thereby obtaining an improved Tiny _ YOLOv3 network model; and (3) inputting the infrared image of the welding spot sample to be detected into the improved Tiny_YOLOv3 network model so as to complete the detection of the welding spot defects. The spaceflight electronic welding spot defect detection</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEgMLkhMTk3LyUzPKFFIzUlNLinKz8tMVihPzUnJzEtXKC7IL1FISU0DSgCpEiCVmZ-nkJtakpGfopCUWJyaogDkZ-YWFOWXAdkhmXmVupH-Pv5lxgp5qSXl-UXZPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tRhkPVBlvLOfoaGhpYWZoYW5ozExagAcrz2y</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>ZHANG XUNING</creator><creator>HUANG LEI</creator><creator>MENG LINGQIANG</creator><creator>LIAO GUANGLAN</creator><creator>FU GUANGHUI</creator><creator>SUN BO</creator><creator>ZHAO JIDING</creator><creator>HAN HANGDI</creator><creator>SI SHUNCHENG</creator><creator>HAN JINGHUI</creator><scope>EVB</scope></search><sort><creationdate>20201124</creationdate><title>Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network</title><author>ZHANG XUNING ; HUANG LEI ; MENG LINGQIANG ; LIAO GUANGLAN ; FU GUANGHUI ; SUN BO ; ZHAO JIDING ; HAN HANGDI ; SI SHUNCHENG ; HAN JINGHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111986187A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG XUNING</creatorcontrib><creatorcontrib>HUANG LEI</creatorcontrib><creatorcontrib>MENG LINGQIANG</creatorcontrib><creatorcontrib>LIAO GUANGLAN</creatorcontrib><creatorcontrib>FU GUANGHUI</creatorcontrib><creatorcontrib>SUN BO</creatorcontrib><creatorcontrib>ZHAO JIDING</creatorcontrib><creatorcontrib>HAN HANGDI</creatorcontrib><creatorcontrib>SI SHUNCHENG</creatorcontrib><creatorcontrib>HAN JINGHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG XUNING</au><au>HUANG LEI</au><au>MENG LINGQIANG</au><au>LIAO GUANGLAN</au><au>FU GUANGHUI</au><au>SUN BO</au><au>ZHAO JIDING</au><au>HAN HANGDI</au><au>SI SHUNCHENG</au><au>HAN JINGHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network</title><date>2020-11-24</date><risdate>2020</risdate><abstract>The invention belongs to the related technical field of defect detection and discloses a spaceflight electronic welding spot defect detection method based on an improved Tiny-YOLOv3 network. The detection method comprises the following steps of (1) enhancing a network layer for feature extraction in Tiny_YOLOv3 by using a Mobileet network, replacing seven convolution and maximum pooling network layers in a Tiny _ YOLOv3 backbone network by using a lightweight network Mobileet to obtain an improved Tiny_YOLOv3 network; (2) inputting a welding spot infrared image with a known defect type into the improved Tiny_YOLOv3 network as a training data set of a sample so as to train and learn the improved Tiny_YOLOv3 network, thereby obtaining an improved Tiny _ YOLOv3 network model; and (3) inputting the infrared image of the welding spot sample to be detected into the improved Tiny_YOLOv3 network model so as to complete the detection of the welding spot defects. The spaceflight electronic welding spot defect detection</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111986187A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Spaceflight electronic welding spot defect detection method based on improved Tiny-YOLOv3 network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20XUNING&rft.date=2020-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111986187A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true