CNN-LSTM-based temperature instrument number identification method and device

The invention provides a CNN-LSTM-based temperature instrument digital identification method and device. According to the method, modeling is carried out by combining a convolutional neural network with a long-term and short-term memory network in a recurrent neural network, so that complicated prep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TANG BIAO, ZHU MENGMENG, HUANG XUYONG, YU HUI, QIN XIONGPENG, LI TING, LI BO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TANG BIAO
ZHU MENGMENG
HUANG XUYONG
YU HUI
QIN XIONGPENG
LI TING
LI BO
description The invention provides a CNN-LSTM-based temperature instrument digital identification method and device. According to the method, modeling is carried out by combining a convolutional neural network with a long-term and short-term memory network in a recurrent neural network, so that complicated preprocessing processes such as excessive cutting do not need to be carried out on picture data in an input model, prediction can be carried out by directly taking a reading picture as an integral input model, and the preprocessing process of reading identification is greatly simplified. The long-termand short-term memory network part adopts a bidirectional long-term and short-term memory network, and meanwhile, past and future information is considered, so that a prediction result is relatively better in performance. A connection time sequence classifier is adopted to decode an output sequence, the problem that input and output are difficult to correspond is solved, many steps are simplified,and the prediction efficie
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111985484A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111985484A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111985484A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEsDqK-w_UBMgQr1FGC4mC72L2kyV8MmDQkNz6_Dj6A0-GDsxad7nt5fwydnEyBI0ZIyIZrBvlYONeAyBRrmJDJuy_87K1hv0QK4OfiyERHDm9vsRWr2bwKdr9uxP56GfRNIi0jSjIWETzqXil1ao9N25wP_zwfs_Q2HA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CNN-LSTM-based temperature instrument number identification method and device</title><source>esp@cenet</source><creator>TANG BIAO ; ZHU MENGMENG ; HUANG XUYONG ; YU HUI ; QIN XIONGPENG ; LI TING ; LI BO</creator><creatorcontrib>TANG BIAO ; ZHU MENGMENG ; HUANG XUYONG ; YU HUI ; QIN XIONGPENG ; LI TING ; LI BO</creatorcontrib><description>The invention provides a CNN-LSTM-based temperature instrument digital identification method and device. According to the method, modeling is carried out by combining a convolutional neural network with a long-term and short-term memory network in a recurrent neural network, so that complicated preprocessing processes such as excessive cutting do not need to be carried out on picture data in an input model, prediction can be carried out by directly taking a reading picture as an integral input model, and the preprocessing process of reading identification is greatly simplified. The long-termand short-term memory network part adopts a bidirectional long-term and short-term memory network, and meanwhile, past and future information is considered, so that a prediction result is relatively better in performance. A connection time sequence classifier is adopted to decode an output sequence, the problem that input and output are difficult to correspond is solved, many steps are simplified,and the prediction efficie</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201124&amp;DB=EPODOC&amp;CC=CN&amp;NR=111985484A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201124&amp;DB=EPODOC&amp;CC=CN&amp;NR=111985484A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TANG BIAO</creatorcontrib><creatorcontrib>ZHU MENGMENG</creatorcontrib><creatorcontrib>HUANG XUYONG</creatorcontrib><creatorcontrib>YU HUI</creatorcontrib><creatorcontrib>QIN XIONGPENG</creatorcontrib><creatorcontrib>LI TING</creatorcontrib><creatorcontrib>LI BO</creatorcontrib><title>CNN-LSTM-based temperature instrument number identification method and device</title><description>The invention provides a CNN-LSTM-based temperature instrument digital identification method and device. According to the method, modeling is carried out by combining a convolutional neural network with a long-term and short-term memory network in a recurrent neural network, so that complicated preprocessing processes such as excessive cutting do not need to be carried out on picture data in an input model, prediction can be carried out by directly taking a reading picture as an integral input model, and the preprocessing process of reading identification is greatly simplified. The long-termand short-term memory network part adopts a bidirectional long-term and short-term memory network, and meanwhile, past and future information is considered, so that a prediction result is relatively better in performance. A connection time sequence classifier is adopted to decode an output sequence, the problem that input and output are difficult to correspond is solved, many steps are simplified,and the prediction efficie</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEsDqK-w_UBMgQr1FGC4mC72L2kyV8MmDQkNz6_Dj6A0-GDsxad7nt5fwydnEyBI0ZIyIZrBvlYONeAyBRrmJDJuy_87K1hv0QK4OfiyERHDm9vsRWr2bwKdr9uxP56GfRNIi0jSjIWETzqXil1ao9N25wP_zwfs_Q2HA</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>TANG BIAO</creator><creator>ZHU MENGMENG</creator><creator>HUANG XUYONG</creator><creator>YU HUI</creator><creator>QIN XIONGPENG</creator><creator>LI TING</creator><creator>LI BO</creator><scope>EVB</scope></search><sort><creationdate>20201124</creationdate><title>CNN-LSTM-based temperature instrument number identification method and device</title><author>TANG BIAO ; ZHU MENGMENG ; HUANG XUYONG ; YU HUI ; QIN XIONGPENG ; LI TING ; LI BO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111985484A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>TANG BIAO</creatorcontrib><creatorcontrib>ZHU MENGMENG</creatorcontrib><creatorcontrib>HUANG XUYONG</creatorcontrib><creatorcontrib>YU HUI</creatorcontrib><creatorcontrib>QIN XIONGPENG</creatorcontrib><creatorcontrib>LI TING</creatorcontrib><creatorcontrib>LI BO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TANG BIAO</au><au>ZHU MENGMENG</au><au>HUANG XUYONG</au><au>YU HUI</au><au>QIN XIONGPENG</au><au>LI TING</au><au>LI BO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CNN-LSTM-based temperature instrument number identification method and device</title><date>2020-11-24</date><risdate>2020</risdate><abstract>The invention provides a CNN-LSTM-based temperature instrument digital identification method and device. According to the method, modeling is carried out by combining a convolutional neural network with a long-term and short-term memory network in a recurrent neural network, so that complicated preprocessing processes such as excessive cutting do not need to be carried out on picture data in an input model, prediction can be carried out by directly taking a reading picture as an integral input model, and the preprocessing process of reading identification is greatly simplified. The long-termand short-term memory network part adopts a bidirectional long-term and short-term memory network, and meanwhile, past and future information is considered, so that a prediction result is relatively better in performance. A connection time sequence classifier is adopted to decode an output sequence, the problem that input and output are difficult to correspond is solved, many steps are simplified,and the prediction efficie</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111985484A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title CNN-LSTM-based temperature instrument number identification method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TANG%20BIAO&rft.date=2020-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111985484A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true