Power load prediction method based on Kalman filter and convolutional neural network

The invention discloses a power load prediction method based on a Kalman filter and a convolutional neural network. The power load prediction method comprises the following steps: acquiring historicalload data of a power system in a certain region, and processing abnormal data of the historical load...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WEI MOFAN, LUO JINMING, HU BO, ZHUANG YAN, LIN SHENG, ZHAO YAN, WANG SHUNJIANG, ZENG YA, WANG HAO, XUAN XUAN, JIANG HE, WANG RUOXI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WEI MOFAN
LUO JINMING
HU BO
ZHUANG YAN
LIN SHENG
ZHAO YAN
WANG SHUNJIANG
ZENG YA
WANG HAO
XUAN XUAN
JIANG HE
WANG RUOXI
description The invention discloses a power load prediction method based on a Kalman filter and a convolutional neural network. The power load prediction method comprises the following steps: acquiring historicalload data of a power system in a certain region, and processing abnormal data of the historical load data; analyzing and quantifying factors influencing the power load, wehrein the corrected data arenormalized; determining input and output data of a neural network, determining the number of neurons of an optimal hidden layer, and establishing a convolutional neural network; carrying out prediction by using the trained convolutional neural network, and carrying out inverse normalization on predicted data to obtain a load prediction value; determining a Kalman equation according to the time sequence model and the predicted value of the convolutional neural network, taking the predicted value of the time sequence model as a real value of Kalman filtering, taking the predicted value of the convolutional neural networ
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111967688A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111967688A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111967688A3</originalsourceid><addsrcrecordid>eNrjZAgJyC9PLVLIyU9MUSgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDyvRNzchPzFNIyc0qAqhPzUhSS8_PK8nNKQaoTcxTyUkuLwFRJeX5RNg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOBaqMd_YzNDS0NDM3s7BwNCZGDQClrjkf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power load prediction method based on Kalman filter and convolutional neural network</title><source>esp@cenet</source><creator>WEI MOFAN ; LUO JINMING ; HU BO ; ZHUANG YAN ; LIN SHENG ; ZHAO YAN ; WANG SHUNJIANG ; ZENG YA ; WANG HAO ; XUAN XUAN ; JIANG HE ; WANG RUOXI</creator><creatorcontrib>WEI MOFAN ; LUO JINMING ; HU BO ; ZHUANG YAN ; LIN SHENG ; ZHAO YAN ; WANG SHUNJIANG ; ZENG YA ; WANG HAO ; XUAN XUAN ; JIANG HE ; WANG RUOXI</creatorcontrib><description>The invention discloses a power load prediction method based on a Kalman filter and a convolutional neural network. The power load prediction method comprises the following steps: acquiring historicalload data of a power system in a certain region, and processing abnormal data of the historical load data; analyzing and quantifying factors influencing the power load, wehrein the corrected data arenormalized; determining input and output data of a neural network, determining the number of neurons of an optimal hidden layer, and establishing a convolutional neural network; carrying out prediction by using the trained convolutional neural network, and carrying out inverse normalization on predicted data to obtain a load prediction value; determining a Kalman equation according to the time sequence model and the predicted value of the convolutional neural network, taking the predicted value of the time sequence model as a real value of Kalman filtering, taking the predicted value of the convolutional neural networ</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201120&amp;DB=EPODOC&amp;CC=CN&amp;NR=111967688A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201120&amp;DB=EPODOC&amp;CC=CN&amp;NR=111967688A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WEI MOFAN</creatorcontrib><creatorcontrib>LUO JINMING</creatorcontrib><creatorcontrib>HU BO</creatorcontrib><creatorcontrib>ZHUANG YAN</creatorcontrib><creatorcontrib>LIN SHENG</creatorcontrib><creatorcontrib>ZHAO YAN</creatorcontrib><creatorcontrib>WANG SHUNJIANG</creatorcontrib><creatorcontrib>ZENG YA</creatorcontrib><creatorcontrib>WANG HAO</creatorcontrib><creatorcontrib>XUAN XUAN</creatorcontrib><creatorcontrib>JIANG HE</creatorcontrib><creatorcontrib>WANG RUOXI</creatorcontrib><title>Power load prediction method based on Kalman filter and convolutional neural network</title><description>The invention discloses a power load prediction method based on a Kalman filter and a convolutional neural network. The power load prediction method comprises the following steps: acquiring historicalload data of a power system in a certain region, and processing abnormal data of the historical load data; analyzing and quantifying factors influencing the power load, wehrein the corrected data arenormalized; determining input and output data of a neural network, determining the number of neurons of an optimal hidden layer, and establishing a convolutional neural network; carrying out prediction by using the trained convolutional neural network, and carrying out inverse normalization on predicted data to obtain a load prediction value; determining a Kalman equation according to the time sequence model and the predicted value of the convolutional neural network, taking the predicted value of the time sequence model as a real value of Kalman filtering, taking the predicted value of the convolutional neural networ</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgJyC9PLVLIyU9MUSgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDyvRNzchPzFNIyc0qAqhPzUhSS8_PK8nNKQaoTcxTyUkuLwFRJeX5RNg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOBaqMd_YzNDS0NDM3s7BwNCZGDQClrjkf</recordid><startdate>20201120</startdate><enddate>20201120</enddate><creator>WEI MOFAN</creator><creator>LUO JINMING</creator><creator>HU BO</creator><creator>ZHUANG YAN</creator><creator>LIN SHENG</creator><creator>ZHAO YAN</creator><creator>WANG SHUNJIANG</creator><creator>ZENG YA</creator><creator>WANG HAO</creator><creator>XUAN XUAN</creator><creator>JIANG HE</creator><creator>WANG RUOXI</creator><scope>EVB</scope></search><sort><creationdate>20201120</creationdate><title>Power load prediction method based on Kalman filter and convolutional neural network</title><author>WEI MOFAN ; LUO JINMING ; HU BO ; ZHUANG YAN ; LIN SHENG ; ZHAO YAN ; WANG SHUNJIANG ; ZENG YA ; WANG HAO ; XUAN XUAN ; JIANG HE ; WANG RUOXI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111967688A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WEI MOFAN</creatorcontrib><creatorcontrib>LUO JINMING</creatorcontrib><creatorcontrib>HU BO</creatorcontrib><creatorcontrib>ZHUANG YAN</creatorcontrib><creatorcontrib>LIN SHENG</creatorcontrib><creatorcontrib>ZHAO YAN</creatorcontrib><creatorcontrib>WANG SHUNJIANG</creatorcontrib><creatorcontrib>ZENG YA</creatorcontrib><creatorcontrib>WANG HAO</creatorcontrib><creatorcontrib>XUAN XUAN</creatorcontrib><creatorcontrib>JIANG HE</creatorcontrib><creatorcontrib>WANG RUOXI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEI MOFAN</au><au>LUO JINMING</au><au>HU BO</au><au>ZHUANG YAN</au><au>LIN SHENG</au><au>ZHAO YAN</au><au>WANG SHUNJIANG</au><au>ZENG YA</au><au>WANG HAO</au><au>XUAN XUAN</au><au>JIANG HE</au><au>WANG RUOXI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power load prediction method based on Kalman filter and convolutional neural network</title><date>2020-11-20</date><risdate>2020</risdate><abstract>The invention discloses a power load prediction method based on a Kalman filter and a convolutional neural network. The power load prediction method comprises the following steps: acquiring historicalload data of a power system in a certain region, and processing abnormal data of the historical load data; analyzing and quantifying factors influencing the power load, wehrein the corrected data arenormalized; determining input and output data of a neural network, determining the number of neurons of an optimal hidden layer, and establishing a convolutional neural network; carrying out prediction by using the trained convolutional neural network, and carrying out inverse normalization on predicted data to obtain a load prediction value; determining a Kalman equation according to the time sequence model and the predicted value of the convolutional neural network, taking the predicted value of the time sequence model as a real value of Kalman filtering, taking the predicted value of the convolutional neural networ</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111967688A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power load prediction method based on Kalman filter and convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WEI%20MOFAN&rft.date=2020-11-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111967688A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true