Pain data evaluation method based on self-encoding and related components
The invention discloses a pain data evaluation method based on self-encoding and related components. The method comprises the following steps: taking laser evoked potential electroencephalogram data as an input signal, transmitting the laser evoked potential electroencephalogram data to a convolutio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI FANGCHAO WANG JIAHAO ZHANG ZHIGUO HUANG GAN |
description | The invention discloses a pain data evaluation method based on self-encoding and related components. The method comprises the following steps: taking laser evoked potential electroencephalogram data as an input signal, transmitting the laser evoked potential electroencephalogram data to a convolutional neural network, extracting the information of a time domain and a space domain, and reducing thenumber of network parameters through employing a depth separable convolution layer; reducing the data feature dimension to a preset dimension by using a full connection layer to obtain a coded signal; recovering the coded signal by using a deconvolution and up-sampling technology to obtain a reconstructed signal, and completing the construction of a neural network self-coding model; updating parameters of the neural network self-encoding model by calculating gradient iteration of a difference value between the reconstructed signal and the input signal, so that the neural network self-encodingmodel achieves convergenc |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111951958A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111951958A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111951958A3</originalsourceid><addsrcrecordid>eNqNijEKAjEQRbexEPUO4wG2CCJoKYuijVjYL2Py1w1kZ4IZPb8pPIDw4fF4f95cbhyFAhsTPpzebFGFJtiogR5cEKh6QRpaiNcQ5UksgV5IbDV6nbIKxMqymQ2cClY_Lpr16Xjvzi2y9iiZPQTWd1fn3H5btzts_vl8AcB_NI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Pain data evaluation method based on self-encoding and related components</title><source>esp@cenet</source><creator>LI FANGCHAO ; WANG JIAHAO ; ZHANG ZHIGUO ; HUANG GAN</creator><creatorcontrib>LI FANGCHAO ; WANG JIAHAO ; ZHANG ZHIGUO ; HUANG GAN</creatorcontrib><description>The invention discloses a pain data evaluation method based on self-encoding and related components. The method comprises the following steps: taking laser evoked potential electroencephalogram data as an input signal, transmitting the laser evoked potential electroencephalogram data to a convolutional neural network, extracting the information of a time domain and a space domain, and reducing thenumber of network parameters through employing a depth separable convolution layer; reducing the data feature dimension to a preset dimension by using a full connection layer to obtain a coded signal; recovering the coded signal by using a deconvolution and up-sampling technology to obtain a reconstructed signal, and completing the construction of a neural network self-coding model; updating parameters of the neural network self-encoding model by calculating gradient iteration of a difference value between the reconstructed signal and the input signal, so that the neural network self-encodingmodel achieves convergenc</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201117&DB=EPODOC&CC=CN&NR=111951958A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201117&DB=EPODOC&CC=CN&NR=111951958A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI FANGCHAO</creatorcontrib><creatorcontrib>WANG JIAHAO</creatorcontrib><creatorcontrib>ZHANG ZHIGUO</creatorcontrib><creatorcontrib>HUANG GAN</creatorcontrib><title>Pain data evaluation method based on self-encoding and related components</title><description>The invention discloses a pain data evaluation method based on self-encoding and related components. The method comprises the following steps: taking laser evoked potential electroencephalogram data as an input signal, transmitting the laser evoked potential electroencephalogram data to a convolutional neural network, extracting the information of a time domain and a space domain, and reducing thenumber of network parameters through employing a depth separable convolution layer; reducing the data feature dimension to a preset dimension by using a full connection layer to obtain a coded signal; recovering the coded signal by using a deconvolution and up-sampling technology to obtain a reconstructed signal, and completing the construction of a neural network self-coding model; updating parameters of the neural network self-encoding model by calculating gradient iteration of a difference value between the reconstructed signal and the input signal, so that the neural network self-encodingmodel achieves convergenc</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKAjEQRbexEPUO4wG2CCJoKYuijVjYL2Py1w1kZ4IZPb8pPIDw4fF4f95cbhyFAhsTPpzebFGFJtiogR5cEKh6QRpaiNcQ5UksgV5IbDV6nbIKxMqymQ2cClY_Lpr16Xjvzi2y9iiZPQTWd1fn3H5btzts_vl8AcB_NI8</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>LI FANGCHAO</creator><creator>WANG JIAHAO</creator><creator>ZHANG ZHIGUO</creator><creator>HUANG GAN</creator><scope>EVB</scope></search><sort><creationdate>20201117</creationdate><title>Pain data evaluation method based on self-encoding and related components</title><author>LI FANGCHAO ; WANG JIAHAO ; ZHANG ZHIGUO ; HUANG GAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111951958A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>LI FANGCHAO</creatorcontrib><creatorcontrib>WANG JIAHAO</creatorcontrib><creatorcontrib>ZHANG ZHIGUO</creatorcontrib><creatorcontrib>HUANG GAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI FANGCHAO</au><au>WANG JIAHAO</au><au>ZHANG ZHIGUO</au><au>HUANG GAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Pain data evaluation method based on self-encoding and related components</title><date>2020-11-17</date><risdate>2020</risdate><abstract>The invention discloses a pain data evaluation method based on self-encoding and related components. The method comprises the following steps: taking laser evoked potential electroencephalogram data as an input signal, transmitting the laser evoked potential electroencephalogram data to a convolutional neural network, extracting the information of a time domain and a space domain, and reducing thenumber of network parameters through employing a depth separable convolution layer; reducing the data feature dimension to a preset dimension by using a full connection layer to obtain a coded signal; recovering the coded signal by using a deconvolution and up-sampling technology to obtain a reconstructed signal, and completing the construction of a neural network self-coding model; updating parameters of the neural network self-encoding model by calculating gradient iteration of a difference value between the reconstructed signal and the input signal, so that the neural network self-encodingmodel achieves convergenc</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111951958A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DIAGNOSIS HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA HUMAN NECESSITIES HYGIENE IDENTIFICATION INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS MEDICAL OR VETERINARY SCIENCE PHYSICS SURGERY |
title | Pain data evaluation method based on self-encoding and related components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20FANGCHAO&rft.date=2020-11-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111951958A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |