Image feature extraction method based on complex values
The invention discloses an image feature extraction method based on a complex value, and belongs to the field of image feature extraction. In order to enable image features to be more expressive and solve the problem that the current image feature extraction is incomplete, the method comprises the f...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TIAN LING ZHAO TAIYIN QIN KE LIU JIANGLIN WEI WENXUAN LUO GUANGCHUN |
description | The invention discloses an image feature extraction method based on a complex value, and belongs to the field of image feature extraction. In order to enable image features to be more expressive and solve the problem that the current image feature extraction is incomplete, the method comprises the following steps: constructing a neural network complex value layer based on a plurality of images; constructing a plurality of modules for feature extraction by utilizing the replication layer; and combining the plurality of modules, and performing image feature extraction by using the combined modules. On the basis of the existing neural network structure, the image feature representation effect is greatly improved by introducing a plurality of data expressions.
本发明公开了一种基于复值的图像特征提取方法,属于图像特征提取领域。为了使图像特征更具表现力,解决目前图像特征提取不够完善的问题,本发明包括:基于复数构建神经网络复值层;利用所述复制层构建用于特征提取的多个模块;将所述多个模块进行结合,利用结合后的模块进行图像特征提取。本发明基于现有神经网络结构,通过将复数引入数据表达,极大地提高了图像特征表示效果。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111931788A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111931788A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111931788A3</originalsourceid><addsrcrecordid>eNrjZDD3zE1MT1VIS00sKS1KVUitKClKTC7JzM9TyE0tychPUUhKLE5NUQDyk_NzC3JSKxTKEnNKU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoaGlsaG5hYWjMTFqANXELgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image feature extraction method based on complex values</title><source>esp@cenet</source><creator>TIAN LING ; ZHAO TAIYIN ; QIN KE ; LIU JIANGLIN ; WEI WENXUAN ; LUO GUANGCHUN</creator><creatorcontrib>TIAN LING ; ZHAO TAIYIN ; QIN KE ; LIU JIANGLIN ; WEI WENXUAN ; LUO GUANGCHUN</creatorcontrib><description>The invention discloses an image feature extraction method based on a complex value, and belongs to the field of image feature extraction. In order to enable image features to be more expressive and solve the problem that the current image feature extraction is incomplete, the method comprises the following steps: constructing a neural network complex value layer based on a plurality of images; constructing a plurality of modules for feature extraction by utilizing the replication layer; and combining the plurality of modules, and performing image feature extraction by using the combined modules. On the basis of the existing neural network structure, the image feature representation effect is greatly improved by introducing a plurality of data expressions.
本发明公开了一种基于复值的图像特征提取方法,属于图像特征提取领域。为了使图像特征更具表现力,解决目前图像特征提取不够完善的问题,本发明包括:基于复数构建神经网络复值层;利用所述复制层构建用于特征提取的多个模块;将所述多个模块进行结合,利用结合后的模块进行图像特征提取。本发明基于现有神经网络结构,通过将复数引入数据表达,极大地提高了图像特征表示效果。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201113&DB=EPODOC&CC=CN&NR=111931788A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201113&DB=EPODOC&CC=CN&NR=111931788A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TIAN LING</creatorcontrib><creatorcontrib>ZHAO TAIYIN</creatorcontrib><creatorcontrib>QIN KE</creatorcontrib><creatorcontrib>LIU JIANGLIN</creatorcontrib><creatorcontrib>WEI WENXUAN</creatorcontrib><creatorcontrib>LUO GUANGCHUN</creatorcontrib><title>Image feature extraction method based on complex values</title><description>The invention discloses an image feature extraction method based on a complex value, and belongs to the field of image feature extraction. In order to enable image features to be more expressive and solve the problem that the current image feature extraction is incomplete, the method comprises the following steps: constructing a neural network complex value layer based on a plurality of images; constructing a plurality of modules for feature extraction by utilizing the replication layer; and combining the plurality of modules, and performing image feature extraction by using the combined modules. On the basis of the existing neural network structure, the image feature representation effect is greatly improved by introducing a plurality of data expressions.
本发明公开了一种基于复值的图像特征提取方法,属于图像特征提取领域。为了使图像特征更具表现力,解决目前图像特征提取不够完善的问题,本发明包括:基于复数构建神经网络复值层;利用所述复制层构建用于特征提取的多个模块;将所述多个模块进行结合,利用结合后的模块进行图像特征提取。本发明基于现有神经网络结构,通过将复数引入数据表达,极大地提高了图像特征表示效果。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD3zE1MT1VIS00sKS1KVUitKClKTC7JzM9TyE0tychPUUhKLE5NUQDyk_NzC3JSKxTKEnNKU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoaGlsaG5hYWjMTFqANXELgE</recordid><startdate>20201113</startdate><enddate>20201113</enddate><creator>TIAN LING</creator><creator>ZHAO TAIYIN</creator><creator>QIN KE</creator><creator>LIU JIANGLIN</creator><creator>WEI WENXUAN</creator><creator>LUO GUANGCHUN</creator><scope>EVB</scope></search><sort><creationdate>20201113</creationdate><title>Image feature extraction method based on complex values</title><author>TIAN LING ; ZHAO TAIYIN ; QIN KE ; LIU JIANGLIN ; WEI WENXUAN ; LUO GUANGCHUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111931788A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>TIAN LING</creatorcontrib><creatorcontrib>ZHAO TAIYIN</creatorcontrib><creatorcontrib>QIN KE</creatorcontrib><creatorcontrib>LIU JIANGLIN</creatorcontrib><creatorcontrib>WEI WENXUAN</creatorcontrib><creatorcontrib>LUO GUANGCHUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TIAN LING</au><au>ZHAO TAIYIN</au><au>QIN KE</au><au>LIU JIANGLIN</au><au>WEI WENXUAN</au><au>LUO GUANGCHUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image feature extraction method based on complex values</title><date>2020-11-13</date><risdate>2020</risdate><abstract>The invention discloses an image feature extraction method based on a complex value, and belongs to the field of image feature extraction. In order to enable image features to be more expressive and solve the problem that the current image feature extraction is incomplete, the method comprises the following steps: constructing a neural network complex value layer based on a plurality of images; constructing a plurality of modules for feature extraction by utilizing the replication layer; and combining the plurality of modules, and performing image feature extraction by using the combined modules. On the basis of the existing neural network structure, the image feature representation effect is greatly improved by introducing a plurality of data expressions.
本发明公开了一种基于复值的图像特征提取方法,属于图像特征提取领域。为了使图像特征更具表现力,解决目前图像特征提取不够完善的问题,本发明包括:基于复数构建神经网络复值层;利用所述复制层构建用于特征提取的多个模块;将所述多个模块进行结合,利用结合后的模块进行图像特征提取。本发明基于现有神经网络结构,通过将复数引入数据表达,极大地提高了图像特征表示效果。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111931788A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Image feature extraction method based on complex values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TIAN%20LING&rft.date=2020-11-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111931788A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |