Transformer top oil temperature prediction method based on grey-autoregressive differential moving average model

The invention discloses a transformer top oil temperature prediction method based on a grey-autoregressive differential moving average model, and aims to solve the technical problems of complex oil temperature prediction process, large calculated amount and large prediction error in the prior art. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DU YANAN, SHI JIANHUA, QI JINGXIAN, CAO YUEFENG, SHA SHUMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DU YANAN
SHI JIANHUA
QI JINGXIAN
CAO YUEFENG
SHA SHUMING
description The invention discloses a transformer top oil temperature prediction method based on a grey-autoregressive differential moving average model, and aims to solve the technical problems of complex oil temperature prediction process, large calculated amount and large prediction error in the prior art. The method comprises the following steps: preprocessing historical oil temperature data; performing fitting training on the preprocessed historical oil temperature data based on a gray model, and constructing an initial prediction model of the top oil temperature of the transformer; calculating a deviation sequence of the initial predicted oil temperature and the actual oil temperature; performing fitting training on the deviation sequence based on an autoregressive differential moving average model to obtain a deviation prediction value; and constructing a transformer top oil temperature prediction model based on the deviation prediction value and the initial prediction model to obtain a transformer top oil tempera
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111931354A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111931354A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111931354A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywFSWIGCEkUgKqr0kYmfgyX_tN5E4va44ABU80Z6mm2TB9ax2MQBTJIyJedJEDJYy8KgzDBuEpciBcg7GXrpAkPVZ8an1YskRp2luBVknLVgRHHaU0irizPptcZmVDXw-2ZjtS84_Lhrjvfb0D9a5DSiZD0hQsb-qZS6dKo7n67dP58vBlFEeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transformer top oil temperature prediction method based on grey-autoregressive differential moving average model</title><source>esp@cenet</source><creator>DU YANAN ; SHI JIANHUA ; QI JINGXIAN ; CAO YUEFENG ; SHA SHUMING</creator><creatorcontrib>DU YANAN ; SHI JIANHUA ; QI JINGXIAN ; CAO YUEFENG ; SHA SHUMING</creatorcontrib><description>The invention discloses a transformer top oil temperature prediction method based on a grey-autoregressive differential moving average model, and aims to solve the technical problems of complex oil temperature prediction process, large calculated amount and large prediction error in the prior art. The method comprises the following steps: preprocessing historical oil temperature data; performing fitting training on the preprocessed historical oil temperature data based on a gray model, and constructing an initial prediction model of the top oil temperature of the transformer; calculating a deviation sequence of the initial predicted oil temperature and the actual oil temperature; performing fitting training on the deviation sequence based on an autoregressive differential moving average model to obtain a deviation prediction value; and constructing a transformer top oil temperature prediction model based on the deviation prediction value and the initial prediction model to obtain a transformer top oil tempera</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201113&amp;DB=EPODOC&amp;CC=CN&amp;NR=111931354A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201113&amp;DB=EPODOC&amp;CC=CN&amp;NR=111931354A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DU YANAN</creatorcontrib><creatorcontrib>SHI JIANHUA</creatorcontrib><creatorcontrib>QI JINGXIAN</creatorcontrib><creatorcontrib>CAO YUEFENG</creatorcontrib><creatorcontrib>SHA SHUMING</creatorcontrib><title>Transformer top oil temperature prediction method based on grey-autoregressive differential moving average model</title><description>The invention discloses a transformer top oil temperature prediction method based on a grey-autoregressive differential moving average model, and aims to solve the technical problems of complex oil temperature prediction process, large calculated amount and large prediction error in the prior art. The method comprises the following steps: preprocessing historical oil temperature data; performing fitting training on the preprocessed historical oil temperature data based on a gray model, and constructing an initial prediction model of the top oil temperature of the transformer; calculating a deviation sequence of the initial predicted oil temperature and the actual oil temperature; performing fitting training on the deviation sequence based on an autoregressive differential moving average model to obtain a deviation prediction value; and constructing a transformer top oil temperature prediction model based on the deviation prediction value and the initial prediction model to obtain a transformer top oil tempera</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywFSWIGCEkUgKqr0kYmfgyX_tN5E4va44ABU80Z6mm2TB9ax2MQBTJIyJedJEDJYy8KgzDBuEpciBcg7GXrpAkPVZ8an1YskRp2luBVknLVgRHHaU0irizPptcZmVDXw-2ZjtS84_Lhrjvfb0D9a5DSiZD0hQsb-qZS6dKo7n67dP58vBlFEeg</recordid><startdate>20201113</startdate><enddate>20201113</enddate><creator>DU YANAN</creator><creator>SHI JIANHUA</creator><creator>QI JINGXIAN</creator><creator>CAO YUEFENG</creator><creator>SHA SHUMING</creator><scope>EVB</scope></search><sort><creationdate>20201113</creationdate><title>Transformer top oil temperature prediction method based on grey-autoregressive differential moving average model</title><author>DU YANAN ; SHI JIANHUA ; QI JINGXIAN ; CAO YUEFENG ; SHA SHUMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111931354A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DU YANAN</creatorcontrib><creatorcontrib>SHI JIANHUA</creatorcontrib><creatorcontrib>QI JINGXIAN</creatorcontrib><creatorcontrib>CAO YUEFENG</creatorcontrib><creatorcontrib>SHA SHUMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DU YANAN</au><au>SHI JIANHUA</au><au>QI JINGXIAN</au><au>CAO YUEFENG</au><au>SHA SHUMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transformer top oil temperature prediction method based on grey-autoregressive differential moving average model</title><date>2020-11-13</date><risdate>2020</risdate><abstract>The invention discloses a transformer top oil temperature prediction method based on a grey-autoregressive differential moving average model, and aims to solve the technical problems of complex oil temperature prediction process, large calculated amount and large prediction error in the prior art. The method comprises the following steps: preprocessing historical oil temperature data; performing fitting training on the preprocessed historical oil temperature data based on a gray model, and constructing an initial prediction model of the top oil temperature of the transformer; calculating a deviation sequence of the initial predicted oil temperature and the actual oil temperature; performing fitting training on the deviation sequence based on an autoregressive differential moving average model to obtain a deviation prediction value; and constructing a transformer top oil temperature prediction model based on the deviation prediction value and the initial prediction model to obtain a transformer top oil tempera</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111931354A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Transformer top oil temperature prediction method based on grey-autoregressive differential moving average model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DU%20YANAN&rft.date=2020-11-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111931354A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true