Human body behavior recognition method based on depth map and skeleton points

The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUANG XIAOYI, ZHU XIN, DOU FURONG, SHAN QIANGDA, LI DONGLU, GUO ZHAOKANG, WANG YANG, SIMA MINGJUN, YANG BIN, FENG ZILIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUANG XIAOYI
ZHU XIN
DOU FURONG
SHAN QIANGDA
LI DONGLU
GUO ZHAOKANG
WANG YANG
SIMA MINGJUN
YANG BIN
FENG ZILIANG
description The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavior; only relevant data of important parts which contribute much to behaviors is used for feature extraction, similar data in different behaviors is removed, and the feature'purity 'is high; the distribution condition of the motion trails of the important parts of the human body in the space is accurately expressed in a space sub-grid dividing mode. Practical application shows that the features extracted by the method have good discrimination for human body behavior recognition. 本发明提供了一种基于深度图和骨骼点的人体行为识别方法,使用时间金字塔对行为序列进行不同尺度的分割,保留了行为内部的时序信息;只使用对行为贡献大的重要部位的相关数据进行特征提取,去除了不同行为中较为相似的数据,特征"纯度"高;通过划分空间子格的方式,较为精确的表达了人体重要部位的运动轨迹在空间中的分布情况。实际应用情况表明,该方法提取的特征,对于人体行为识别具有较好的区分度。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111914796A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111914796A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111914796A3</originalsourceid><addsrcrecordid>eNqNirEKwjAURbM4iPoPzw9wCIrSUYrSRSf38tJcbbB5LzRR8O_t4Ac4Hc7hzM2leUUWcuo_5NDzO-hIIzp9SChBhSJKr54cZ3ia3COVniInYvGUnxhQppw0SMlLM7vzkLH6cWHW59OtbjZI2iIn7iAobX211lZ2d6j2x-0_zxfLDjYf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Human body behavior recognition method based on depth map and skeleton points</title><source>esp@cenet</source><creator>HUANG XIAOYI ; ZHU XIN ; DOU FURONG ; SHAN QIANGDA ; LI DONGLU ; GUO ZHAOKANG ; WANG YANG ; SIMA MINGJUN ; YANG BIN ; FENG ZILIANG</creator><creatorcontrib>HUANG XIAOYI ; ZHU XIN ; DOU FURONG ; SHAN QIANGDA ; LI DONGLU ; GUO ZHAOKANG ; WANG YANG ; SIMA MINGJUN ; YANG BIN ; FENG ZILIANG</creatorcontrib><description>The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavior; only relevant data of important parts which contribute much to behaviors is used for feature extraction, similar data in different behaviors is removed, and the feature'purity 'is high; the distribution condition of the motion trails of the important parts of the human body in the space is accurately expressed in a space sub-grid dividing mode. Practical application shows that the features extracted by the method have good discrimination for human body behavior recognition. 本发明提供了一种基于深度图和骨骼点的人体行为识别方法,使用时间金字塔对行为序列进行不同尺度的分割,保留了行为内部的时序信息;只使用对行为贡献大的重要部位的相关数据进行特征提取,去除了不同行为中较为相似的数据,特征"纯度"高;通过划分空间子格的方式,较为精确的表达了人体重要部位的运动轨迹在空间中的分布情况。实际应用情况表明,该方法提取的特征,对于人体行为识别具有较好的区分度。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201110&amp;DB=EPODOC&amp;CC=CN&amp;NR=111914796A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201110&amp;DB=EPODOC&amp;CC=CN&amp;NR=111914796A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG XIAOYI</creatorcontrib><creatorcontrib>ZHU XIN</creatorcontrib><creatorcontrib>DOU FURONG</creatorcontrib><creatorcontrib>SHAN QIANGDA</creatorcontrib><creatorcontrib>LI DONGLU</creatorcontrib><creatorcontrib>GUO ZHAOKANG</creatorcontrib><creatorcontrib>WANG YANG</creatorcontrib><creatorcontrib>SIMA MINGJUN</creatorcontrib><creatorcontrib>YANG BIN</creatorcontrib><creatorcontrib>FENG ZILIANG</creatorcontrib><title>Human body behavior recognition method based on depth map and skeleton points</title><description>The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavior; only relevant data of important parts which contribute much to behaviors is used for feature extraction, similar data in different behaviors is removed, and the feature'purity 'is high; the distribution condition of the motion trails of the important parts of the human body in the space is accurately expressed in a space sub-grid dividing mode. Practical application shows that the features extracted by the method have good discrimination for human body behavior recognition. 本发明提供了一种基于深度图和骨骼点的人体行为识别方法,使用时间金字塔对行为序列进行不同尺度的分割,保留了行为内部的时序信息;只使用对行为贡献大的重要部位的相关数据进行特征提取,去除了不同行为中较为相似的数据,特征"纯度"高;通过划分空间子格的方式,较为精确的表达了人体重要部位的运动轨迹在空间中的分布情况。实际应用情况表明,该方法提取的特征,对于人体行为识别具有较好的区分度。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAURbM4iPoPzw9wCIrSUYrSRSf38tJcbbB5LzRR8O_t4Ac4Hc7hzM2leUUWcuo_5NDzO-hIIzp9SChBhSJKr54cZ3ia3COVniInYvGUnxhQppw0SMlLM7vzkLH6cWHW59OtbjZI2iIn7iAobX211lZ2d6j2x-0_zxfLDjYf</recordid><startdate>20201110</startdate><enddate>20201110</enddate><creator>HUANG XIAOYI</creator><creator>ZHU XIN</creator><creator>DOU FURONG</creator><creator>SHAN QIANGDA</creator><creator>LI DONGLU</creator><creator>GUO ZHAOKANG</creator><creator>WANG YANG</creator><creator>SIMA MINGJUN</creator><creator>YANG BIN</creator><creator>FENG ZILIANG</creator><scope>EVB</scope></search><sort><creationdate>20201110</creationdate><title>Human body behavior recognition method based on depth map and skeleton points</title><author>HUANG XIAOYI ; ZHU XIN ; DOU FURONG ; SHAN QIANGDA ; LI DONGLU ; GUO ZHAOKANG ; WANG YANG ; SIMA MINGJUN ; YANG BIN ; FENG ZILIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111914796A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG XIAOYI</creatorcontrib><creatorcontrib>ZHU XIN</creatorcontrib><creatorcontrib>DOU FURONG</creatorcontrib><creatorcontrib>SHAN QIANGDA</creatorcontrib><creatorcontrib>LI DONGLU</creatorcontrib><creatorcontrib>GUO ZHAOKANG</creatorcontrib><creatorcontrib>WANG YANG</creatorcontrib><creatorcontrib>SIMA MINGJUN</creatorcontrib><creatorcontrib>YANG BIN</creatorcontrib><creatorcontrib>FENG ZILIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG XIAOYI</au><au>ZHU XIN</au><au>DOU FURONG</au><au>SHAN QIANGDA</au><au>LI DONGLU</au><au>GUO ZHAOKANG</au><au>WANG YANG</au><au>SIMA MINGJUN</au><au>YANG BIN</au><au>FENG ZILIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Human body behavior recognition method based on depth map and skeleton points</title><date>2020-11-10</date><risdate>2020</risdate><abstract>The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavior; only relevant data of important parts which contribute much to behaviors is used for feature extraction, similar data in different behaviors is removed, and the feature'purity 'is high; the distribution condition of the motion trails of the important parts of the human body in the space is accurately expressed in a space sub-grid dividing mode. Practical application shows that the features extracted by the method have good discrimination for human body behavior recognition. 本发明提供了一种基于深度图和骨骼点的人体行为识别方法,使用时间金字塔对行为序列进行不同尺度的分割,保留了行为内部的时序信息;只使用对行为贡献大的重要部位的相关数据进行特征提取,去除了不同行为中较为相似的数据,特征"纯度"高;通过划分空间子格的方式,较为精确的表达了人体重要部位的运动轨迹在空间中的分布情况。实际应用情况表明,该方法提取的特征,对于人体行为识别具有较好的区分度。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111914796A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Human body behavior recognition method based on depth map and skeleton points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20XIAOYI&rft.date=2020-11-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111914796A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true