Human body behavior recognition method based on depth map and skeleton points
The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavi...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HUANG XIAOYI ZHU XIN DOU FURONG SHAN QIANGDA LI DONGLU GUO ZHAOKANG WANG YANG SIMA MINGJUN YANG BIN FENG ZILIANG |
description | The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavior; only relevant data of important parts which contribute much to behaviors is used for feature extraction, similar data in different behaviors is removed, and the feature'purity 'is high; the distribution condition of the motion trails of the important parts of the human body in the space is accurately expressed in a space sub-grid dividing mode. Practical application shows that the features extracted by the method have good discrimination for human body behavior recognition.
本发明提供了一种基于深度图和骨骼点的人体行为识别方法,使用时间金字塔对行为序列进行不同尺度的分割,保留了行为内部的时序信息;只使用对行为贡献大的重要部位的相关数据进行特征提取,去除了不同行为中较为相似的数据,特征"纯度"高;通过划分空间子格的方式,较为精确的表达了人体重要部位的运动轨迹在空间中的分布情况。实际应用情况表明,该方法提取的特征,对于人体行为识别具有较好的区分度。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111914796A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111914796A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111914796A3</originalsourceid><addsrcrecordid>eNqNirEKwjAURbM4iPoPzw9wCIrSUYrSRSf38tJcbbB5LzRR8O_t4Ac4Hc7hzM2leUUWcuo_5NDzO-hIIzp9SChBhSJKr54cZ3ia3COVniInYvGUnxhQppw0SMlLM7vzkLH6cWHW59OtbjZI2iIn7iAobX211lZ2d6j2x-0_zxfLDjYf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Human body behavior recognition method based on depth map and skeleton points</title><source>esp@cenet</source><creator>HUANG XIAOYI ; ZHU XIN ; DOU FURONG ; SHAN QIANGDA ; LI DONGLU ; GUO ZHAOKANG ; WANG YANG ; SIMA MINGJUN ; YANG BIN ; FENG ZILIANG</creator><creatorcontrib>HUANG XIAOYI ; ZHU XIN ; DOU FURONG ; SHAN QIANGDA ; LI DONGLU ; GUO ZHAOKANG ; WANG YANG ; SIMA MINGJUN ; YANG BIN ; FENG ZILIANG</creatorcontrib><description>The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavior; only relevant data of important parts which contribute much to behaviors is used for feature extraction, similar data in different behaviors is removed, and the feature'purity 'is high; the distribution condition of the motion trails of the important parts of the human body in the space is accurately expressed in a space sub-grid dividing mode. Practical application shows that the features extracted by the method have good discrimination for human body behavior recognition.
本发明提供了一种基于深度图和骨骼点的人体行为识别方法,使用时间金字塔对行为序列进行不同尺度的分割,保留了行为内部的时序信息;只使用对行为贡献大的重要部位的相关数据进行特征提取,去除了不同行为中较为相似的数据,特征"纯度"高;通过划分空间子格的方式,较为精确的表达了人体重要部位的运动轨迹在空间中的分布情况。实际应用情况表明,该方法提取的特征,对于人体行为识别具有较好的区分度。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201110&DB=EPODOC&CC=CN&NR=111914796A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201110&DB=EPODOC&CC=CN&NR=111914796A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG XIAOYI</creatorcontrib><creatorcontrib>ZHU XIN</creatorcontrib><creatorcontrib>DOU FURONG</creatorcontrib><creatorcontrib>SHAN QIANGDA</creatorcontrib><creatorcontrib>LI DONGLU</creatorcontrib><creatorcontrib>GUO ZHAOKANG</creatorcontrib><creatorcontrib>WANG YANG</creatorcontrib><creatorcontrib>SIMA MINGJUN</creatorcontrib><creatorcontrib>YANG BIN</creatorcontrib><creatorcontrib>FENG ZILIANG</creatorcontrib><title>Human body behavior recognition method based on depth map and skeleton points</title><description>The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavior; only relevant data of important parts which contribute much to behaviors is used for feature extraction, similar data in different behaviors is removed, and the feature'purity 'is high; the distribution condition of the motion trails of the important parts of the human body in the space is accurately expressed in a space sub-grid dividing mode. Practical application shows that the features extracted by the method have good discrimination for human body behavior recognition.
本发明提供了一种基于深度图和骨骼点的人体行为识别方法,使用时间金字塔对行为序列进行不同尺度的分割,保留了行为内部的时序信息;只使用对行为贡献大的重要部位的相关数据进行特征提取,去除了不同行为中较为相似的数据,特征"纯度"高;通过划分空间子格的方式,较为精确的表达了人体重要部位的运动轨迹在空间中的分布情况。实际应用情况表明,该方法提取的特征,对于人体行为识别具有较好的区分度。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAURbM4iPoPzw9wCIrSUYrSRSf38tJcbbB5LzRR8O_t4Ac4Hc7hzM2leUUWcuo_5NDzO-hIIzp9SChBhSJKr54cZ3ia3COVniInYvGUnxhQppw0SMlLM7vzkLH6cWHW59OtbjZI2iIn7iAobX211lZ2d6j2x-0_zxfLDjYf</recordid><startdate>20201110</startdate><enddate>20201110</enddate><creator>HUANG XIAOYI</creator><creator>ZHU XIN</creator><creator>DOU FURONG</creator><creator>SHAN QIANGDA</creator><creator>LI DONGLU</creator><creator>GUO ZHAOKANG</creator><creator>WANG YANG</creator><creator>SIMA MINGJUN</creator><creator>YANG BIN</creator><creator>FENG ZILIANG</creator><scope>EVB</scope></search><sort><creationdate>20201110</creationdate><title>Human body behavior recognition method based on depth map and skeleton points</title><author>HUANG XIAOYI ; ZHU XIN ; DOU FURONG ; SHAN QIANGDA ; LI DONGLU ; GUO ZHAOKANG ; WANG YANG ; SIMA MINGJUN ; YANG BIN ; FENG ZILIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111914796A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG XIAOYI</creatorcontrib><creatorcontrib>ZHU XIN</creatorcontrib><creatorcontrib>DOU FURONG</creatorcontrib><creatorcontrib>SHAN QIANGDA</creatorcontrib><creatorcontrib>LI DONGLU</creatorcontrib><creatorcontrib>GUO ZHAOKANG</creatorcontrib><creatorcontrib>WANG YANG</creatorcontrib><creatorcontrib>SIMA MINGJUN</creatorcontrib><creatorcontrib>YANG BIN</creatorcontrib><creatorcontrib>FENG ZILIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG XIAOYI</au><au>ZHU XIN</au><au>DOU FURONG</au><au>SHAN QIANGDA</au><au>LI DONGLU</au><au>GUO ZHAOKANG</au><au>WANG YANG</au><au>SIMA MINGJUN</au><au>YANG BIN</au><au>FENG ZILIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Human body behavior recognition method based on depth map and skeleton points</title><date>2020-11-10</date><risdate>2020</risdate><abstract>The invention provides a human body behavior recognition method based on a depth map and skeleton points, and the method comprises the steps: carrying out the different-scale segmentation of a behavior sequence through employing a time pyramid, and reserving the time sequence information in a behavior; only relevant data of important parts which contribute much to behaviors is used for feature extraction, similar data in different behaviors is removed, and the feature'purity 'is high; the distribution condition of the motion trails of the important parts of the human body in the space is accurately expressed in a space sub-grid dividing mode. Practical application shows that the features extracted by the method have good discrimination for human body behavior recognition.
本发明提供了一种基于深度图和骨骼点的人体行为识别方法,使用时间金字塔对行为序列进行不同尺度的分割,保留了行为内部的时序信息;只使用对行为贡献大的重要部位的相关数据进行特征提取,去除了不同行为中较为相似的数据,特征"纯度"高;通过划分空间子格的方式,较为精确的表达了人体重要部位的运动轨迹在空间中的分布情况。实际应用情况表明,该方法提取的特征,对于人体行为识别具有较好的区分度。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111914796A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Human body behavior recognition method based on depth map and skeleton points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20XIAOYI&rft.date=2020-11-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111914796A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |