Power grid attack detection method and device based on improved RNN neural network

The invention provides a power grid attack detection method and device based on an improved RNN neural network. Various related data in the intelligent power grid are obtained, processed and input into a neural network model for training, an improved genetic algorithm and a particle swarm optimizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU XIN, YANG YUN, YAN YAO, YAN HUA, DAI HAORENG, ZHU ZHU, LIANG HUA, ZHOU QUAN, XIANG FEI, ZHANG SEN, WAN LINGYUN, GONG LIN, LI SONGNONG, CHEN TAO, LI YANG, LI WEI, HOU XINGZHE, XU LEIYANG, YU JIAN, HAN SHIHAI, ZHANG WEI, JING YUWEN, LEI JUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU XIN
YANG YUN
YAN YAO
YAN HUA
DAI HAORENG
ZHU ZHU
LIANG HUA
ZHOU QUAN
XIANG FEI
ZHANG SEN
WAN LINGYUN
GONG LIN
LI SONGNONG
CHEN TAO
LI YANG
LI WEI
HOU XINGZHE
XU LEIYANG
YU JIAN
HAN SHIHAI
ZHANG WEI
JING YUWEN
LEI JUAN
description The invention provides a power grid attack detection method and device based on an improved RNN neural network. Various related data in the intelligent power grid are obtained, processed and input into a neural network model for training, an improved genetic algorithm and a particle swarm optimization algorithm are adopted in the neural network model to process the obtained data, and an optimal weight and an optimal threshold value are obtained; wherein the training of the neural network model adopts error back propagation to update a weight and a threshold value, loop iteration is carried outby calculating the mean square sum of network errors as a condition to complete network training, and a detection result is obtained according to data in an intelligent energy grid acquired in real time. According to the method, the genetic algorithm is improved by adopting the particle swarm optimization algorithm, and the data is evaluated by adopting the adaptive function, so that the situation of local concentration
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111882041A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111882041A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111882041A3</originalsourceid><addsrcrecordid>eNrjZAgKyC9PLVJIL8pMUUgsKUlMzlZISS1JTS7JzM9TyE0tycgHiuelAAXLMpNTFZISi1NTFIBSmbkFRfllQHaQn59CXmppUWIOkCopzy_K5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQJXxzn6GhoYWFkYGJoaOxsSoAQDTiTd8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power grid attack detection method and device based on improved RNN neural network</title><source>esp@cenet</source><creator>XU XIN ; YANG YUN ; YAN YAO ; YAN HUA ; DAI HAORENG ; ZHU ZHU ; LIANG HUA ; ZHOU QUAN ; XIANG FEI ; ZHANG SEN ; WAN LINGYUN ; GONG LIN ; LI SONGNONG ; CHEN TAO ; LI YANG ; LI WEI ; HOU XINGZHE ; XU LEIYANG ; YU JIAN ; HAN SHIHAI ; ZHANG WEI ; JING YUWEN ; LEI JUAN</creator><creatorcontrib>XU XIN ; YANG YUN ; YAN YAO ; YAN HUA ; DAI HAORENG ; ZHU ZHU ; LIANG HUA ; ZHOU QUAN ; XIANG FEI ; ZHANG SEN ; WAN LINGYUN ; GONG LIN ; LI SONGNONG ; CHEN TAO ; LI YANG ; LI WEI ; HOU XINGZHE ; XU LEIYANG ; YU JIAN ; HAN SHIHAI ; ZHANG WEI ; JING YUWEN ; LEI JUAN</creatorcontrib><description>The invention provides a power grid attack detection method and device based on an improved RNN neural network. Various related data in the intelligent power grid are obtained, processed and input into a neural network model for training, an improved genetic algorithm and a particle swarm optimization algorithm are adopted in the neural network model to process the obtained data, and an optimal weight and an optimal threshold value are obtained; wherein the training of the neural network model adopts error back propagation to update a weight and a threshold value, loop iteration is carried outby calculating the mean square sum of network errors as a condition to complete network training, and a detection result is obtained according to data in an intelligent energy grid acquired in real time. According to the method, the genetic algorithm is improved by adopting the particle swarm optimization algorithm, and the data is evaluated by adopting the adaptive function, so that the situation of local concentration</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201103&amp;DB=EPODOC&amp;CC=CN&amp;NR=111882041A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201103&amp;DB=EPODOC&amp;CC=CN&amp;NR=111882041A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU XIN</creatorcontrib><creatorcontrib>YANG YUN</creatorcontrib><creatorcontrib>YAN YAO</creatorcontrib><creatorcontrib>YAN HUA</creatorcontrib><creatorcontrib>DAI HAORENG</creatorcontrib><creatorcontrib>ZHU ZHU</creatorcontrib><creatorcontrib>LIANG HUA</creatorcontrib><creatorcontrib>ZHOU QUAN</creatorcontrib><creatorcontrib>XIANG FEI</creatorcontrib><creatorcontrib>ZHANG SEN</creatorcontrib><creatorcontrib>WAN LINGYUN</creatorcontrib><creatorcontrib>GONG LIN</creatorcontrib><creatorcontrib>LI SONGNONG</creatorcontrib><creatorcontrib>CHEN TAO</creatorcontrib><creatorcontrib>LI YANG</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><creatorcontrib>HOU XINGZHE</creatorcontrib><creatorcontrib>XU LEIYANG</creatorcontrib><creatorcontrib>YU JIAN</creatorcontrib><creatorcontrib>HAN SHIHAI</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><creatorcontrib>JING YUWEN</creatorcontrib><creatorcontrib>LEI JUAN</creatorcontrib><title>Power grid attack detection method and device based on improved RNN neural network</title><description>The invention provides a power grid attack detection method and device based on an improved RNN neural network. Various related data in the intelligent power grid are obtained, processed and input into a neural network model for training, an improved genetic algorithm and a particle swarm optimization algorithm are adopted in the neural network model to process the obtained data, and an optimal weight and an optimal threshold value are obtained; wherein the training of the neural network model adopts error back propagation to update a weight and a threshold value, loop iteration is carried outby calculating the mean square sum of network errors as a condition to complete network training, and a detection result is obtained according to data in an intelligent energy grid acquired in real time. According to the method, the genetic algorithm is improved by adopting the particle swarm optimization algorithm, and the data is evaluated by adopting the adaptive function, so that the situation of local concentration</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgKyC9PLVJIL8pMUUgsKUlMzlZISS1JTS7JzM9TyE0tycgHiuelAAXLMpNTFZISi1NTFIBSmbkFRfllQHaQn59CXmppUWIOkCopzy_K5mFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQJXxzn6GhoYWFkYGJoaOxsSoAQDTiTd8</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>XU XIN</creator><creator>YANG YUN</creator><creator>YAN YAO</creator><creator>YAN HUA</creator><creator>DAI HAORENG</creator><creator>ZHU ZHU</creator><creator>LIANG HUA</creator><creator>ZHOU QUAN</creator><creator>XIANG FEI</creator><creator>ZHANG SEN</creator><creator>WAN LINGYUN</creator><creator>GONG LIN</creator><creator>LI SONGNONG</creator><creator>CHEN TAO</creator><creator>LI YANG</creator><creator>LI WEI</creator><creator>HOU XINGZHE</creator><creator>XU LEIYANG</creator><creator>YU JIAN</creator><creator>HAN SHIHAI</creator><creator>ZHANG WEI</creator><creator>JING YUWEN</creator><creator>LEI JUAN</creator><scope>EVB</scope></search><sort><creationdate>20201103</creationdate><title>Power grid attack detection method and device based on improved RNN neural network</title><author>XU XIN ; YANG YUN ; YAN YAO ; YAN HUA ; DAI HAORENG ; ZHU ZHU ; LIANG HUA ; ZHOU QUAN ; XIANG FEI ; ZHANG SEN ; WAN LINGYUN ; GONG LIN ; LI SONGNONG ; CHEN TAO ; LI YANG ; LI WEI ; HOU XINGZHE ; XU LEIYANG ; YU JIAN ; HAN SHIHAI ; ZHANG WEI ; JING YUWEN ; LEI JUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111882041A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>XU XIN</creatorcontrib><creatorcontrib>YANG YUN</creatorcontrib><creatorcontrib>YAN YAO</creatorcontrib><creatorcontrib>YAN HUA</creatorcontrib><creatorcontrib>DAI HAORENG</creatorcontrib><creatorcontrib>ZHU ZHU</creatorcontrib><creatorcontrib>LIANG HUA</creatorcontrib><creatorcontrib>ZHOU QUAN</creatorcontrib><creatorcontrib>XIANG FEI</creatorcontrib><creatorcontrib>ZHANG SEN</creatorcontrib><creatorcontrib>WAN LINGYUN</creatorcontrib><creatorcontrib>GONG LIN</creatorcontrib><creatorcontrib>LI SONGNONG</creatorcontrib><creatorcontrib>CHEN TAO</creatorcontrib><creatorcontrib>LI YANG</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><creatorcontrib>HOU XINGZHE</creatorcontrib><creatorcontrib>XU LEIYANG</creatorcontrib><creatorcontrib>YU JIAN</creatorcontrib><creatorcontrib>HAN SHIHAI</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><creatorcontrib>JING YUWEN</creatorcontrib><creatorcontrib>LEI JUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU XIN</au><au>YANG YUN</au><au>YAN YAO</au><au>YAN HUA</au><au>DAI HAORENG</au><au>ZHU ZHU</au><au>LIANG HUA</au><au>ZHOU QUAN</au><au>XIANG FEI</au><au>ZHANG SEN</au><au>WAN LINGYUN</au><au>GONG LIN</au><au>LI SONGNONG</au><au>CHEN TAO</au><au>LI YANG</au><au>LI WEI</au><au>HOU XINGZHE</au><au>XU LEIYANG</au><au>YU JIAN</au><au>HAN SHIHAI</au><au>ZHANG WEI</au><au>JING YUWEN</au><au>LEI JUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power grid attack detection method and device based on improved RNN neural network</title><date>2020-11-03</date><risdate>2020</risdate><abstract>The invention provides a power grid attack detection method and device based on an improved RNN neural network. Various related data in the intelligent power grid are obtained, processed and input into a neural network model for training, an improved genetic algorithm and a particle swarm optimization algorithm are adopted in the neural network model to process the obtained data, and an optimal weight and an optimal threshold value are obtained; wherein the training of the neural network model adopts error back propagation to update a weight and a threshold value, loop iteration is carried outby calculating the mean square sum of network errors as a condition to complete network training, and a detection result is obtained according to data in an intelligent energy grid acquired in real time. According to the method, the genetic algorithm is improved by adopting the particle swarm optimization algorithm, and the data is evaluated by adopting the adaptive function, so that the situation of local concentration</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111882041A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Power grid attack detection method and device based on improved RNN neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20XIN&rft.date=2020-11-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111882041A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true