Handwritten ancient character detection method

The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI RANKANG, ZHAO FUJIA, WANG DINGWANG, QIU XIAOGANG, CHEN SHANXIONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI RANKANG
ZHAO FUJIA
WANG DINGWANG
QIU XIAOGANG
CHEN SHANXIONG
description The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box according to a classification result; preprocessing an input image through non-local mean filtering byusing an MSER model based on an NMS, extracting a text contour by using an MSER algorithm, generating candidate boxes by using a minimum bounding rectangle, and screening out the most accurate MT candidate boxes by the NMS; and synchronously outputting two different candidate boxes of the same character by the ATD network and the MSER model, and combining the two candidate boxes by a combinationalgorithm to obtain an FT type textbox. Test results on ancient book data sets such as Yi language, Chinese, Latin language, Italian language and the like show that the method provided by the invention has good precision and m
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111832390A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111832390A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111832390A3</originalsourceid><addsrcrecordid>eNrjZNDzSMxLKS_KLClJzVNIzEvOTM0rUUjOSCxKTC5JLVJISS1JTS7JzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoaGFsZGxpYGjsbEqAEAJRUq5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Handwritten ancient character detection method</title><source>esp@cenet</source><creator>LI RANKANG ; ZHAO FUJIA ; WANG DINGWANG ; QIU XIAOGANG ; CHEN SHANXIONG</creator><creatorcontrib>LI RANKANG ; ZHAO FUJIA ; WANG DINGWANG ; QIU XIAOGANG ; CHEN SHANXIONG</creatorcontrib><description>The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box according to a classification result; preprocessing an input image through non-local mean filtering byusing an MSER model based on an NMS, extracting a text contour by using an MSER algorithm, generating candidate boxes by using a minimum bounding rectangle, and screening out the most accurate MT candidate boxes by the NMS; and synchronously outputting two different candidate boxes of the same character by the ATD network and the MSER model, and combining the two candidate boxes by a combinationalgorithm to obtain an FT type textbox. Test results on ancient book data sets such as Yi language, Chinese, Latin language, Italian language and the like show that the method provided by the invention has good precision and m</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201027&amp;DB=EPODOC&amp;CC=CN&amp;NR=111832390A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201027&amp;DB=EPODOC&amp;CC=CN&amp;NR=111832390A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI RANKANG</creatorcontrib><creatorcontrib>ZHAO FUJIA</creatorcontrib><creatorcontrib>WANG DINGWANG</creatorcontrib><creatorcontrib>QIU XIAOGANG</creatorcontrib><creatorcontrib>CHEN SHANXIONG</creatorcontrib><title>Handwritten ancient character detection method</title><description>The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box according to a classification result; preprocessing an input image through non-local mean filtering byusing an MSER model based on an NMS, extracting a text contour by using an MSER algorithm, generating candidate boxes by using a minimum bounding rectangle, and screening out the most accurate MT candidate boxes by the NMS; and synchronously outputting two different candidate boxes of the same character by the ATD network and the MSER model, and combining the two candidate boxes by a combinationalgorithm to obtain an FT type textbox. Test results on ancient book data sets such as Yi language, Chinese, Latin language, Italian language and the like show that the method provided by the invention has good precision and m</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDzSMxLKS_KLClJzVNIzEvOTM0rUUjOSCxKTC5JLVJISS1JTS7JzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoaGFsZGxpYGjsbEqAEAJRUq5A</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>LI RANKANG</creator><creator>ZHAO FUJIA</creator><creator>WANG DINGWANG</creator><creator>QIU XIAOGANG</creator><creator>CHEN SHANXIONG</creator><scope>EVB</scope></search><sort><creationdate>20201027</creationdate><title>Handwritten ancient character detection method</title><author>LI RANKANG ; ZHAO FUJIA ; WANG DINGWANG ; QIU XIAOGANG ; CHEN SHANXIONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111832390A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI RANKANG</creatorcontrib><creatorcontrib>ZHAO FUJIA</creatorcontrib><creatorcontrib>WANG DINGWANG</creatorcontrib><creatorcontrib>QIU XIAOGANG</creatorcontrib><creatorcontrib>CHEN SHANXIONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI RANKANG</au><au>ZHAO FUJIA</au><au>WANG DINGWANG</au><au>QIU XIAOGANG</au><au>CHEN SHANXIONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Handwritten ancient character detection method</title><date>2020-10-27</date><risdate>2020</risdate><abstract>The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box according to a classification result; preprocessing an input image through non-local mean filtering byusing an MSER model based on an NMS, extracting a text contour by using an MSER algorithm, generating candidate boxes by using a minimum bounding rectangle, and screening out the most accurate MT candidate boxes by the NMS; and synchronously outputting two different candidate boxes of the same character by the ATD network and the MSER model, and combining the two candidate boxes by a combinationalgorithm to obtain an FT type textbox. Test results on ancient book data sets such as Yi language, Chinese, Latin language, Italian language and the like show that the method provided by the invention has good precision and m</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111832390A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Handwritten ancient character detection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20RANKANG&rft.date=2020-10-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111832390A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true