Handwritten ancient character detection method
The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box ac...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI RANKANG ZHAO FUJIA WANG DINGWANG QIU XIAOGANG CHEN SHANXIONG |
description | The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box according to a classification result; preprocessing an input image through non-local mean filtering byusing an MSER model based on an NMS, extracting a text contour by using an MSER algorithm, generating candidate boxes by using a minimum bounding rectangle, and screening out the most accurate MT candidate boxes by the NMS; and synchronously outputting two different candidate boxes of the same character by the ATD network and the MSER model, and combining the two candidate boxes by a combinationalgorithm to obtain an FT type textbox. Test results on ancient book data sets such as Yi language, Chinese, Latin language, Italian language and the like show that the method provided by the invention has good precision and m |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111832390A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111832390A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111832390A3</originalsourceid><addsrcrecordid>eNrjZNDzSMxLKS_KLClJzVNIzEvOTM0rUUjOSCxKTC5JLVJISS1JTS7JzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoaGFsZGxpYGjsbEqAEAJRUq5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Handwritten ancient character detection method</title><source>esp@cenet</source><creator>LI RANKANG ; ZHAO FUJIA ; WANG DINGWANG ; QIU XIAOGANG ; CHEN SHANXIONG</creator><creatorcontrib>LI RANKANG ; ZHAO FUJIA ; WANG DINGWANG ; QIU XIAOGANG ; CHEN SHANXIONG</creatorcontrib><description>The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box according to a classification result; preprocessing an input image through non-local mean filtering byusing an MSER model based on an NMS, extracting a text contour by using an MSER algorithm, generating candidate boxes by using a minimum bounding rectangle, and screening out the most accurate MT candidate boxes by the NMS; and synchronously outputting two different candidate boxes of the same character by the ATD network and the MSER model, and combining the two candidate boxes by a combinationalgorithm to obtain an FT type textbox. Test results on ancient book data sets such as Yi language, Chinese, Latin language, Italian language and the like show that the method provided by the invention has good precision and m</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201027&DB=EPODOC&CC=CN&NR=111832390A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201027&DB=EPODOC&CC=CN&NR=111832390A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI RANKANG</creatorcontrib><creatorcontrib>ZHAO FUJIA</creatorcontrib><creatorcontrib>WANG DINGWANG</creatorcontrib><creatorcontrib>QIU XIAOGANG</creatorcontrib><creatorcontrib>CHEN SHANXIONG</creatorcontrib><title>Handwritten ancient character detection method</title><description>The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box according to a classification result; preprocessing an input image through non-local mean filtering byusing an MSER model based on an NMS, extracting a text contour by using an MSER algorithm, generating candidate boxes by using a minimum bounding rectangle, and screening out the most accurate MT candidate boxes by the NMS; and synchronously outputting two different candidate boxes of the same character by the ATD network and the MSER model, and combining the two candidate boxes by a combinationalgorithm to obtain an FT type textbox. Test results on ancient book data sets such as Yi language, Chinese, Latin language, Italian language and the like show that the method provided by the invention has good precision and m</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDzSMxLKS_KLClJzVNIzEvOTM0rUUjOSCxKTC5JLVJISS1JTS7JzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoaGFsZGxpYGjsbEqAEAJRUq5A</recordid><startdate>20201027</startdate><enddate>20201027</enddate><creator>LI RANKANG</creator><creator>ZHAO FUJIA</creator><creator>WANG DINGWANG</creator><creator>QIU XIAOGANG</creator><creator>CHEN SHANXIONG</creator><scope>EVB</scope></search><sort><creationdate>20201027</creationdate><title>Handwritten ancient character detection method</title><author>LI RANKANG ; ZHAO FUJIA ; WANG DINGWANG ; QIU XIAOGANG ; CHEN SHANXIONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111832390A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI RANKANG</creatorcontrib><creatorcontrib>ZHAO FUJIA</creatorcontrib><creatorcontrib>WANG DINGWANG</creatorcontrib><creatorcontrib>QIU XIAOGANG</creatorcontrib><creatorcontrib>CHEN SHANXIONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI RANKANG</au><au>ZHAO FUJIA</au><au>WANG DINGWANG</au><au>QIU XIAOGANG</au><au>CHEN SHANXIONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Handwritten ancient character detection method</title><date>2020-10-27</date><risdate>2020</risdate><abstract>The invention provides a handwritten ancient character detection method, which comprises the steps of performing feature learning and character classification on an input image and corresponding annotation information by using an ATD network based on a CNN, and generating an AT type candidate box according to a classification result; preprocessing an input image through non-local mean filtering byusing an MSER model based on an NMS, extracting a text contour by using an MSER algorithm, generating candidate boxes by using a minimum bounding rectangle, and screening out the most accurate MT candidate boxes by the NMS; and synchronously outputting two different candidate boxes of the same character by the ATD network and the MSER model, and combining the two candidate boxes by a combinationalgorithm to obtain an FT type textbox. Test results on ancient book data sets such as Yi language, Chinese, Latin language, Italian language and the like show that the method provided by the invention has good precision and m</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111832390A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Handwritten ancient character detection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20RANKANG&rft.date=2020-10-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111832390A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |