Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation
The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG XIANGPENG QIANG SUNYUAN LIN FANQIANG |
description | The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutional self-encoding neural network comprises an encoder, a decoder and a binary segmentation layer, wherein the decoder adopts an up-sampling part of a U-net network, and the binary segmentation layer is used for carrying out binary classification on each feature element point in a feature tensor output by the decoder according to black and white pixels; wherein the loss function adopts a cross entropy loss function; and finally training a model for image restoration. According to the method, a convolution auto-encoder, U-net, a binary segmentation layer and the like are organically combined, and finally end-to-end restoration can be carried out on fuzzy and non-uniform illumination, noise andtwo-dimensional code ima |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111783494A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111783494A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111783494A3</originalsourceid><addsrcrecordid>eNqNjEEOgkAMRdm4MOod6gFYEEjUpUGNK1fuSWWKTMK0ZKZAvL2DegBXzf_v_S4Tf0KHTzKgk6TGOuJghbGDWgyBp1pG8i9wpK0YkCb2PEo36NfCQSUlnmUPliN1D8s4U5istjCnuA_0jK_1A9bJosEu0OZ3V8n2cr6X15R6qSj0WBOTVuUty7LdPi8OxTH_x3kDYG9FDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation</title><source>esp@cenet</source><creator>WANG XIANGPENG ; QIANG SUNYUAN ; LIN FANQIANG</creator><creatorcontrib>WANG XIANGPENG ; QIANG SUNYUAN ; LIN FANQIANG</creatorcontrib><description>The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutional self-encoding neural network comprises an encoder, a decoder and a binary segmentation layer, wherein the decoder adopts an up-sampling part of a U-net network, and the binary segmentation layer is used for carrying out binary classification on each feature element point in a feature tensor output by the decoder according to black and white pixels; wherein the loss function adopts a cross entropy loss function; and finally training a model for image restoration. According to the method, a convolution auto-encoder, U-net, a binary segmentation layer and the like are organically combined, and finally end-to-end restoration can be carried out on fuzzy and non-uniform illumination, noise andtwo-dimensional code ima</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201016&DB=EPODOC&CC=CN&NR=111783494A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25573,76557</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201016&DB=EPODOC&CC=CN&NR=111783494A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG XIANGPENG</creatorcontrib><creatorcontrib>QIANG SUNYUAN</creatorcontrib><creatorcontrib>LIN FANQIANG</creatorcontrib><title>Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation</title><description>The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutional self-encoding neural network comprises an encoder, a decoder and a binary segmentation layer, wherein the decoder adopts an up-sampling part of a U-net network, and the binary segmentation layer is used for carrying out binary classification on each feature element point in a feature tensor output by the decoder according to black and white pixels; wherein the loss function adopts a cross entropy loss function; and finally training a model for image restoration. According to the method, a convolution auto-encoder, U-net, a binary segmentation layer and the like are organically combined, and finally end-to-end restoration can be carried out on fuzzy and non-uniform illumination, noise andtwo-dimensional code ima</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEOgkAMRdm4MOod6gFYEEjUpUGNK1fuSWWKTMK0ZKZAvL2DegBXzf_v_S4Tf0KHTzKgk6TGOuJghbGDWgyBp1pG8i9wpK0YkCb2PEo36NfCQSUlnmUPliN1D8s4U5istjCnuA_0jK_1A9bJosEu0OZ3V8n2cr6X15R6qSj0WBOTVuUty7LdPi8OxTH_x3kDYG9FDg</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>WANG XIANGPENG</creator><creator>QIANG SUNYUAN</creator><creator>LIN FANQIANG</creator><scope>EVB</scope></search><sort><creationdate>20201016</creationdate><title>Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation</title><author>WANG XIANGPENG ; QIANG SUNYUAN ; LIN FANQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111783494A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG XIANGPENG</creatorcontrib><creatorcontrib>QIANG SUNYUAN</creatorcontrib><creatorcontrib>LIN FANQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG XIANGPENG</au><au>QIANG SUNYUAN</au><au>LIN FANQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation</title><date>2020-10-16</date><risdate>2020</risdate><abstract>The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutional self-encoding neural network comprises an encoder, a decoder and a binary segmentation layer, wherein the decoder adopts an up-sampling part of a U-net network, and the binary segmentation layer is used for carrying out binary classification on each feature element point in a feature tensor output by the decoder according to black and white pixels; wherein the loss function adopts a cross entropy loss function; and finally training a model for image restoration. According to the method, a convolution auto-encoder, U-net, a binary segmentation layer and the like are organically combined, and finally end-to-end restoration can be carried out on fuzzy and non-uniform illumination, noise andtwo-dimensional code ima</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111783494A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20XIANGPENG&rft.date=2020-10-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111783494A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |