Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation

The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG XIANGPENG, QIANG SUNYUAN, LIN FANQIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG XIANGPENG
QIANG SUNYUAN
LIN FANQIANG
description The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutional self-encoding neural network comprises an encoder, a decoder and a binary segmentation layer, wherein the decoder adopts an up-sampling part of a U-net network, and the binary segmentation layer is used for carrying out binary classification on each feature element point in a feature tensor output by the decoder according to black and white pixels; wherein the loss function adopts a cross entropy loss function; and finally training a model for image restoration. According to the method, a convolution auto-encoder, U-net, a binary segmentation layer and the like are organically combined, and finally end-to-end restoration can be carried out on fuzzy and non-uniform illumination, noise andtwo-dimensional code ima
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111783494A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111783494A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111783494A3</originalsourceid><addsrcrecordid>eNqNjEEOgkAMRdm4MOod6gFYEEjUpUGNK1fuSWWKTMK0ZKZAvL2DegBXzf_v_S4Tf0KHTzKgk6TGOuJghbGDWgyBp1pG8i9wpK0YkCb2PEo36NfCQSUlnmUPliN1D8s4U5istjCnuA_0jK_1A9bJosEu0OZ3V8n2cr6X15R6qSj0WBOTVuUty7LdPi8OxTH_x3kDYG9FDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation</title><source>esp@cenet</source><creator>WANG XIANGPENG ; QIANG SUNYUAN ; LIN FANQIANG</creator><creatorcontrib>WANG XIANGPENG ; QIANG SUNYUAN ; LIN FANQIANG</creatorcontrib><description>The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutional self-encoding neural network comprises an encoder, a decoder and a binary segmentation layer, wherein the decoder adopts an up-sampling part of a U-net network, and the binary segmentation layer is used for carrying out binary classification on each feature element point in a feature tensor output by the decoder according to black and white pixels; wherein the loss function adopts a cross entropy loss function; and finally training a model for image restoration. According to the method, a convolution auto-encoder, U-net, a binary segmentation layer and the like are organically combined, and finally end-to-end restoration can be carried out on fuzzy and non-uniform illumination, noise andtwo-dimensional code ima</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201016&amp;DB=EPODOC&amp;CC=CN&amp;NR=111783494A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25573,76557</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201016&amp;DB=EPODOC&amp;CC=CN&amp;NR=111783494A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG XIANGPENG</creatorcontrib><creatorcontrib>QIANG SUNYUAN</creatorcontrib><creatorcontrib>LIN FANQIANG</creatorcontrib><title>Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation</title><description>The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutional self-encoding neural network comprises an encoder, a decoder and a binary segmentation layer, wherein the decoder adopts an up-sampling part of a U-net network, and the binary segmentation layer is used for carrying out binary classification on each feature element point in a feature tensor output by the decoder according to black and white pixels; wherein the loss function adopts a cross entropy loss function; and finally training a model for image restoration. According to the method, a convolution auto-encoder, U-net, a binary segmentation layer and the like are organically combined, and finally end-to-end restoration can be carried out on fuzzy and non-uniform illumination, noise andtwo-dimensional code ima</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEOgkAMRdm4MOod6gFYEEjUpUGNK1fuSWWKTMK0ZKZAvL2DegBXzf_v_S4Tf0KHTzKgk6TGOuJghbGDWgyBp1pG8i9wpK0YkCb2PEo36NfCQSUlnmUPliN1D8s4U5istjCnuA_0jK_1A9bJosEu0OZ3V8n2cr6X15R6qSj0WBOTVuUty7LdPi8OxTH_x3kDYG9FDg</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>WANG XIANGPENG</creator><creator>QIANG SUNYUAN</creator><creator>LIN FANQIANG</creator><scope>EVB</scope></search><sort><creationdate>20201016</creationdate><title>Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation</title><author>WANG XIANGPENG ; QIANG SUNYUAN ; LIN FANQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111783494A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG XIANGPENG</creatorcontrib><creatorcontrib>QIANG SUNYUAN</creatorcontrib><creatorcontrib>LIN FANQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG XIANGPENG</au><au>QIANG SUNYUAN</au><au>LIN FANQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation</title><date>2020-10-16</date><risdate>2020</risdate><abstract>The invention discloses a damaged two-dimensional code recovery method of a convolutional auto-encoder in combination with binary segmentation. The method comprises the steps of preparing a training data set; constructing a deep convolutional self-encoding neural network, wherein the deep convolutional self-encoding neural network comprises an encoder, a decoder and a binary segmentation layer, wherein the decoder adopts an up-sampling part of a U-net network, and the binary segmentation layer is used for carrying out binary classification on each feature element point in a feature tensor output by the decoder according to black and white pixels; wherein the loss function adopts a cross entropy loss function; and finally training a model for image restoration. According to the method, a convolution auto-encoder, U-net, a binary segmentation layer and the like are organically combined, and finally end-to-end restoration can be carried out on fuzzy and non-uniform illumination, noise andtwo-dimensional code ima</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111783494A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Damaged two-dimensional code recovery method of convolutional auto-encoder in combination with binary segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20XIANGPENG&rft.date=2020-10-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111783494A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true