Literature security classification discrimination method based on statistical word segmentation

The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GU ZHENGHAI, YU XIANG, ZHU FENG, LI TENGFEI, LI QIANG, CHEN LIZHE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GU ZHENGHAI
YU XIANG
ZHU FENG
LI TENGFEI
LI QIANG
CHEN LIZHE
description The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document content; carrying out semantic similarity calculation on the document content and sensitive information in a pre-constructed sensitive information base; and calculating the content confidential degree of the electronic file according to the semantic similarity to obtain a security classification judgment result of the electronic file. According to the method, the content of an electronic file is extracted and compared with sensitive information in the sensitive information base, the suspected confidential information in the document is found, and whether the electronic file is confidential or not is judged so as to assist workers in carrying out security classification screening on the electronic file, so that liter
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111767733A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111767733A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111767733A3</originalsourceid><addsrcrecordid>eNqNjD0KAjEQRrexEPUO4wEsQsDUsqxYiJV9iMmsDuRnycwi3t6gHsDq43083rKzZxKsTuaKwOjnSvICHx0zjeSdUMkQiH2lRPmLCeVRAtwcY4DGLO1naXaEZ6mhde4Js3zsdbcYXWTc_HbVbY_DtT_tcCoWeXIeM4rtL0opszdG64P-x3kDVbw-fA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Literature security classification discrimination method based on statistical word segmentation</title><source>esp@cenet</source><creator>GU ZHENGHAI ; YU XIANG ; ZHU FENG ; LI TENGFEI ; LI QIANG ; CHEN LIZHE</creator><creatorcontrib>GU ZHENGHAI ; YU XIANG ; ZHU FENG ; LI TENGFEI ; LI QIANG ; CHEN LIZHE</creatorcontrib><description>The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document content; carrying out semantic similarity calculation on the document content and sensitive information in a pre-constructed sensitive information base; and calculating the content confidential degree of the electronic file according to the semantic similarity to obtain a security classification judgment result of the electronic file. According to the method, the content of an electronic file is extracted and compared with sensitive information in the sensitive information base, the suspected confidential information in the document is found, and whether the electronic file is confidential or not is judged so as to assist workers in carrying out security classification screening on the electronic file, so that liter</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201013&amp;DB=EPODOC&amp;CC=CN&amp;NR=111767733A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201013&amp;DB=EPODOC&amp;CC=CN&amp;NR=111767733A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GU ZHENGHAI</creatorcontrib><creatorcontrib>YU XIANG</creatorcontrib><creatorcontrib>ZHU FENG</creatorcontrib><creatorcontrib>LI TENGFEI</creatorcontrib><creatorcontrib>LI QIANG</creatorcontrib><creatorcontrib>CHEN LIZHE</creatorcontrib><title>Literature security classification discrimination method based on statistical word segmentation</title><description>The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document content; carrying out semantic similarity calculation on the document content and sensitive information in a pre-constructed sensitive information base; and calculating the content confidential degree of the electronic file according to the semantic similarity to obtain a security classification judgment result of the electronic file. According to the method, the content of an electronic file is extracted and compared with sensitive information in the sensitive information base, the suspected confidential information in the document is found, and whether the electronic file is confidential or not is judged so as to assist workers in carrying out security classification screening on the electronic file, so that liter</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjD0KAjEQRrexEPUO4wEsQsDUsqxYiJV9iMmsDuRnycwi3t6gHsDq43083rKzZxKsTuaKwOjnSvICHx0zjeSdUMkQiH2lRPmLCeVRAtwcY4DGLO1naXaEZ6mhde4Js3zsdbcYXWTc_HbVbY_DtT_tcCoWeXIeM4rtL0opszdG64P-x3kDVbw-fA</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>GU ZHENGHAI</creator><creator>YU XIANG</creator><creator>ZHU FENG</creator><creator>LI TENGFEI</creator><creator>LI QIANG</creator><creator>CHEN LIZHE</creator><scope>EVB</scope></search><sort><creationdate>20201013</creationdate><title>Literature security classification discrimination method based on statistical word segmentation</title><author>GU ZHENGHAI ; YU XIANG ; ZHU FENG ; LI TENGFEI ; LI QIANG ; CHEN LIZHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111767733A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GU ZHENGHAI</creatorcontrib><creatorcontrib>YU XIANG</creatorcontrib><creatorcontrib>ZHU FENG</creatorcontrib><creatorcontrib>LI TENGFEI</creatorcontrib><creatorcontrib>LI QIANG</creatorcontrib><creatorcontrib>CHEN LIZHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GU ZHENGHAI</au><au>YU XIANG</au><au>ZHU FENG</au><au>LI TENGFEI</au><au>LI QIANG</au><au>CHEN LIZHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Literature security classification discrimination method based on statistical word segmentation</title><date>2020-10-13</date><risdate>2020</risdate><abstract>The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document content; carrying out semantic similarity calculation on the document content and sensitive information in a pre-constructed sensitive information base; and calculating the content confidential degree of the electronic file according to the semantic similarity to obtain a security classification judgment result of the electronic file. According to the method, the content of an electronic file is extracted and compared with sensitive information in the sensitive information base, the suspected confidential information in the document is found, and whether the electronic file is confidential or not is judged so as to assist workers in carrying out security classification screening on the electronic file, so that liter</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111767733A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Literature security classification discrimination method based on statistical word segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GU%20ZHENGHAI&rft.date=2020-10-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111767733A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true