Literature security classification discrimination method based on statistical word segmentation
The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document c...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GU ZHENGHAI YU XIANG ZHU FENG LI TENGFEI LI QIANG CHEN LIZHE |
description | The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document content; carrying out semantic similarity calculation on the document content and sensitive information in a pre-constructed sensitive information base; and calculating the content confidential degree of the electronic file according to the semantic similarity to obtain a security classification judgment result of the electronic file. According to the method, the content of an electronic file is extracted and compared with sensitive information in the sensitive information base, the suspected confidential information in the document is found, and whether the electronic file is confidential or not is judged so as to assist workers in carrying out security classification screening on the electronic file, so that liter |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111767733A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111767733A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111767733A3</originalsourceid><addsrcrecordid>eNqNjD0KAjEQRrexEPUO4wEsQsDUsqxYiJV9iMmsDuRnycwi3t6gHsDq43083rKzZxKsTuaKwOjnSvICHx0zjeSdUMkQiH2lRPmLCeVRAtwcY4DGLO1naXaEZ6mhde4Js3zsdbcYXWTc_HbVbY_DtT_tcCoWeXIeM4rtL0opszdG64P-x3kDVbw-fA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Literature security classification discrimination method based on statistical word segmentation</title><source>esp@cenet</source><creator>GU ZHENGHAI ; YU XIANG ; ZHU FENG ; LI TENGFEI ; LI QIANG ; CHEN LIZHE</creator><creatorcontrib>GU ZHENGHAI ; YU XIANG ; ZHU FENG ; LI TENGFEI ; LI QIANG ; CHEN LIZHE</creatorcontrib><description>The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document content; carrying out semantic similarity calculation on the document content and sensitive information in a pre-constructed sensitive information base; and calculating the content confidential degree of the electronic file according to the semantic similarity to obtain a security classification judgment result of the electronic file. According to the method, the content of an electronic file is extracted and compared with sensitive information in the sensitive information base, the suspected confidential information in the document is found, and whether the electronic file is confidential or not is judged so as to assist workers in carrying out security classification screening on the electronic file, so that liter</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201013&DB=EPODOC&CC=CN&NR=111767733A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201013&DB=EPODOC&CC=CN&NR=111767733A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GU ZHENGHAI</creatorcontrib><creatorcontrib>YU XIANG</creatorcontrib><creatorcontrib>ZHU FENG</creatorcontrib><creatorcontrib>LI TENGFEI</creatorcontrib><creatorcontrib>LI QIANG</creatorcontrib><creatorcontrib>CHEN LIZHE</creatorcontrib><title>Literature security classification discrimination method based on statistical word segmentation</title><description>The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document content; carrying out semantic similarity calculation on the document content and sensitive information in a pre-constructed sensitive information base; and calculating the content confidential degree of the electronic file according to the semantic similarity to obtain a security classification judgment result of the electronic file. According to the method, the content of an electronic file is extracted and compared with sensitive information in the sensitive information base, the suspected confidential information in the document is found, and whether the electronic file is confidential or not is judged so as to assist workers in carrying out security classification screening on the electronic file, so that liter</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjD0KAjEQRrexEPUO4wEsQsDUsqxYiJV9iMmsDuRnycwi3t6gHsDq43083rKzZxKsTuaKwOjnSvICHx0zjeSdUMkQiH2lRPmLCeVRAtwcY4DGLO1naXaEZ6mhde4Js3zsdbcYXWTc_HbVbY_DtT_tcCoWeXIeM4rtL0opszdG64P-x3kDVbw-fA</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>GU ZHENGHAI</creator><creator>YU XIANG</creator><creator>ZHU FENG</creator><creator>LI TENGFEI</creator><creator>LI QIANG</creator><creator>CHEN LIZHE</creator><scope>EVB</scope></search><sort><creationdate>20201013</creationdate><title>Literature security classification discrimination method based on statistical word segmentation</title><author>GU ZHENGHAI ; YU XIANG ; ZHU FENG ; LI TENGFEI ; LI QIANG ; CHEN LIZHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111767733A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GU ZHENGHAI</creatorcontrib><creatorcontrib>YU XIANG</creatorcontrib><creatorcontrib>ZHU FENG</creatorcontrib><creatorcontrib>LI TENGFEI</creatorcontrib><creatorcontrib>LI QIANG</creatorcontrib><creatorcontrib>CHEN LIZHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GU ZHENGHAI</au><au>YU XIANG</au><au>ZHU FENG</au><au>LI TENGFEI</au><au>LI QIANG</au><au>CHEN LIZHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Literature security classification discrimination method based on statistical word segmentation</title><date>2020-10-13</date><risdate>2020</risdate><abstract>The invention discloses a literature security classification discrimination method based on statistical word segmentation, which belongs to the technical field of information security, and comprises the following steps: extracting text content in an electronic file to obtain corresponding document content; carrying out semantic similarity calculation on the document content and sensitive information in a pre-constructed sensitive information base; and calculating the content confidential degree of the electronic file according to the semantic similarity to obtain a security classification judgment result of the electronic file. According to the method, the content of an electronic file is extracted and compared with sensitive information in the sensitive information base, the suspected confidential information in the document is found, and whether the electronic file is confidential or not is judged so as to assist workers in carrying out security classification screening on the electronic file, so that liter</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111767733A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Literature security classification discrimination method based on statistical word segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GU%20ZHENGHAI&rft.date=2020-10-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111767733A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |