User behavior prediction method and system based on deep walk and ensemble learning

The invention discloses a user behavior prediction method and system based on deep walk and ensemble learning. According to the method, preprocessing work is carried out on the problems of repetition,abnormality, redundancy and the like existing in an original data set, statistical information and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU ZHILIANG, CHEN ZUO, ZHU SANGZHI, GU HAORAN, YANG SHENGGANG, YANG JIELIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU ZHILIANG
CHEN ZUO
ZHU SANGZHI
GU HAORAN
YANG SHENGGANG
YANG JIELIN
description The invention discloses a user behavior prediction method and system based on deep walk and ensemble learning. According to the method, preprocessing work is carried out on the problems of repetition,abnormality, redundancy and the like existing in an original data set, statistical information and activeness information capable of reflecting behavioral habits and preference degrees of consumers are extracted from the preprocessed data set to construct a user portrait for the user, then, random walk is carried out through a social network graph structure of commodities purchased by the user toobtain a new behavior sequence; and then, a Word2vec model is used to obtain the upper and lower information of each behavior of the user, and the upper and lower information is added into a machinelearning model for training and learning, so that the prediction reliability and prediction precision of the model are improved. 本发明公开了基于深度游走和集成学习的用户行为预测方法及系统,本发明对原始数据集中存在的重复、异常和冗余等问题进行了预处理工作,从预处理后的数据集中提取出能够反映消费者行为习惯和偏好程度的统计信息和
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111695042A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111695042A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111695042A3</originalsourceid><addsrcrecordid>eNqNyjsKAjEURuFpLETdw3UBgvEFljIoVjZqPdxM_nGCeZEbFHeviAuwOsV3htX5Ksik0fPDxkwpw9i22BjIo_TREAdD8pICT5oFhj5kgERPdvevIgi8diAHzsGG27gadOwEk19H1fSwv9THGVJsIIlbBJSmPimlNtv1fLXYLf953jybOCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>User behavior prediction method and system based on deep walk and ensemble learning</title><source>esp@cenet</source><creator>WU ZHILIANG ; CHEN ZUO ; ZHU SANGZHI ; GU HAORAN ; YANG SHENGGANG ; YANG JIELIN</creator><creatorcontrib>WU ZHILIANG ; CHEN ZUO ; ZHU SANGZHI ; GU HAORAN ; YANG SHENGGANG ; YANG JIELIN</creatorcontrib><description>The invention discloses a user behavior prediction method and system based on deep walk and ensemble learning. According to the method, preprocessing work is carried out on the problems of repetition,abnormality, redundancy and the like existing in an original data set, statistical information and activeness information capable of reflecting behavioral habits and preference degrees of consumers are extracted from the preprocessed data set to construct a user portrait for the user, then, random walk is carried out through a social network graph structure of commodities purchased by the user toobtain a new behavior sequence; and then, a Word2vec model is used to obtain the upper and lower information of each behavior of the user, and the upper and lower information is added into a machinelearning model for training and learning, so that the prediction reliability and prediction precision of the model are improved. 本发明公开了基于深度游走和集成学习的用户行为预测方法及系统,本发明对原始数据集中存在的重复、异常和冗余等问题进行了预处理工作,从预处理后的数据集中提取出能够反映消费者行为习惯和偏好程度的统计信息和</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200922&amp;DB=EPODOC&amp;CC=CN&amp;NR=111695042A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200922&amp;DB=EPODOC&amp;CC=CN&amp;NR=111695042A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU ZHILIANG</creatorcontrib><creatorcontrib>CHEN ZUO</creatorcontrib><creatorcontrib>ZHU SANGZHI</creatorcontrib><creatorcontrib>GU HAORAN</creatorcontrib><creatorcontrib>YANG SHENGGANG</creatorcontrib><creatorcontrib>YANG JIELIN</creatorcontrib><title>User behavior prediction method and system based on deep walk and ensemble learning</title><description>The invention discloses a user behavior prediction method and system based on deep walk and ensemble learning. According to the method, preprocessing work is carried out on the problems of repetition,abnormality, redundancy and the like existing in an original data set, statistical information and activeness information capable of reflecting behavioral habits and preference degrees of consumers are extracted from the preprocessed data set to construct a user portrait for the user, then, random walk is carried out through a social network graph structure of commodities purchased by the user toobtain a new behavior sequence; and then, a Word2vec model is used to obtain the upper and lower information of each behavior of the user, and the upper and lower information is added into a machinelearning model for training and learning, so that the prediction reliability and prediction precision of the model are improved. 本发明公开了基于深度游走和集成学习的用户行为预测方法及系统,本发明对原始数据集中存在的重复、异常和冗余等问题进行了预处理工作,从预处理后的数据集中提取出能够反映消费者行为习惯和偏好程度的统计信息和</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjsKAjEURuFpLETdw3UBgvEFljIoVjZqPdxM_nGCeZEbFHeviAuwOsV3htX5Ksik0fPDxkwpw9i22BjIo_TREAdD8pICT5oFhj5kgERPdvevIgi8diAHzsGG27gadOwEk19H1fSwv9THGVJsIIlbBJSmPimlNtv1fLXYLf953jybOCQ</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>WU ZHILIANG</creator><creator>CHEN ZUO</creator><creator>ZHU SANGZHI</creator><creator>GU HAORAN</creator><creator>YANG SHENGGANG</creator><creator>YANG JIELIN</creator><scope>EVB</scope></search><sort><creationdate>20200922</creationdate><title>User behavior prediction method and system based on deep walk and ensemble learning</title><author>WU ZHILIANG ; CHEN ZUO ; ZHU SANGZHI ; GU HAORAN ; YANG SHENGGANG ; YANG JIELIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111695042A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WU ZHILIANG</creatorcontrib><creatorcontrib>CHEN ZUO</creatorcontrib><creatorcontrib>ZHU SANGZHI</creatorcontrib><creatorcontrib>GU HAORAN</creatorcontrib><creatorcontrib>YANG SHENGGANG</creatorcontrib><creatorcontrib>YANG JIELIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU ZHILIANG</au><au>CHEN ZUO</au><au>ZHU SANGZHI</au><au>GU HAORAN</au><au>YANG SHENGGANG</au><au>YANG JIELIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>User behavior prediction method and system based on deep walk and ensemble learning</title><date>2020-09-22</date><risdate>2020</risdate><abstract>The invention discloses a user behavior prediction method and system based on deep walk and ensemble learning. According to the method, preprocessing work is carried out on the problems of repetition,abnormality, redundancy and the like existing in an original data set, statistical information and activeness information capable of reflecting behavioral habits and preference degrees of consumers are extracted from the preprocessed data set to construct a user portrait for the user, then, random walk is carried out through a social network graph structure of commodities purchased by the user toobtain a new behavior sequence; and then, a Word2vec model is used to obtain the upper and lower information of each behavior of the user, and the upper and lower information is added into a machinelearning model for training and learning, so that the prediction reliability and prediction precision of the model are improved. 本发明公开了基于深度游走和集成学习的用户行为预测方法及系统,本发明对原始数据集中存在的重复、异常和冗余等问题进行了预处理工作,从预处理后的数据集中提取出能够反映消费者行为习惯和偏好程度的统计信息和</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111695042A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title User behavior prediction method and system based on deep walk and ensemble learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20ZHILIANG&rft.date=2020-09-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111695042A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true