Hollow recognition method and device based on neural network, storage medium and terminal

The invention discloses a hollow recognition method and device based on a neural network, a storage medium and a terminal, and the method comprises the steps: providing a training set and a test set,wherein the training set comprises a plurality of hollow training pictures containing hollows and a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG ZHONGCHANG, WANG MINGMING, LI TONGTONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG ZHONGCHANG
WANG MINGMING
LI TONGTONG
description The invention discloses a hollow recognition method and device based on a neural network, a storage medium and a terminal, and the method comprises the steps: providing a training set and a test set,wherein the training set comprises a plurality of hollow training pictures containing hollows and a plurality of hollow-free training pictures not containing hollows, aand the test set comprises a plurality of test pictures; segmenting each hollowed-out training picture into a plurality of hollowed-out picture blocks, and segmenting each non-hollowed-out training picture into a plurality of non-hollowed-out picture blocks; training a neural network model based on the hollowed-out picture blocks and the non-hollowed-out picture blocks; performing a hollow recognition test on the test picture byusing the neural network model, wherein the neural network model comprises a convolution layer, a pooling layer, an activation layer and a 1 * N output layer. According to the invention, the identification accuracy and effici
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111626370A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111626370A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111626370A3</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbM4iPoPz13BWqizFKWTk4tTeSbXGkzzSpLa3zeIH-B0hnPPnatbI87JRAFaOm-TFU890lMMsTdk8LYadOcIQ1l5jIFdRpokvDYUkwTukBNjx_6bJITeenZLNXuwi1j9uFDr8-laN1sM0iIOrJFv2vpSFEW1r8rD7lj-s_kA3Xw6jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hollow recognition method and device based on neural network, storage medium and terminal</title><source>esp@cenet</source><creator>YANG ZHONGCHANG ; WANG MINGMING ; LI TONGTONG</creator><creatorcontrib>YANG ZHONGCHANG ; WANG MINGMING ; LI TONGTONG</creatorcontrib><description>The invention discloses a hollow recognition method and device based on a neural network, a storage medium and a terminal, and the method comprises the steps: providing a training set and a test set,wherein the training set comprises a plurality of hollow training pictures containing hollows and a plurality of hollow-free training pictures not containing hollows, aand the test set comprises a plurality of test pictures; segmenting each hollowed-out training picture into a plurality of hollowed-out picture blocks, and segmenting each non-hollowed-out training picture into a plurality of non-hollowed-out picture blocks; training a neural network model based on the hollowed-out picture blocks and the non-hollowed-out picture blocks; performing a hollow recognition test on the test picture byusing the neural network model, wherein the neural network model comprises a convolution layer, a pooling layer, an activation layer and a 1 * N output layer. According to the invention, the identification accuracy and effici</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200904&amp;DB=EPODOC&amp;CC=CN&amp;NR=111626370A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200904&amp;DB=EPODOC&amp;CC=CN&amp;NR=111626370A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG ZHONGCHANG</creatorcontrib><creatorcontrib>WANG MINGMING</creatorcontrib><creatorcontrib>LI TONGTONG</creatorcontrib><title>Hollow recognition method and device based on neural network, storage medium and terminal</title><description>The invention discloses a hollow recognition method and device based on a neural network, a storage medium and a terminal, and the method comprises the steps: providing a training set and a test set,wherein the training set comprises a plurality of hollow training pictures containing hollows and a plurality of hollow-free training pictures not containing hollows, aand the test set comprises a plurality of test pictures; segmenting each hollowed-out training picture into a plurality of hollowed-out picture blocks, and segmenting each non-hollowed-out training picture into a plurality of non-hollowed-out picture blocks; training a neural network model based on the hollowed-out picture blocks and the non-hollowed-out picture blocks; performing a hollow recognition test on the test picture byusing the neural network model, wherein the neural network model comprises a convolution layer, a pooling layer, an activation layer and a 1 * N output layer. According to the invention, the identification accuracy and effici</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbM4iPoPz13BWqizFKWTk4tTeSbXGkzzSpLa3zeIH-B0hnPPnatbI87JRAFaOm-TFU890lMMsTdk8LYadOcIQ1l5jIFdRpokvDYUkwTukBNjx_6bJITeenZLNXuwi1j9uFDr8-laN1sM0iIOrJFv2vpSFEW1r8rD7lj-s_kA3Xw6jg</recordid><startdate>20200904</startdate><enddate>20200904</enddate><creator>YANG ZHONGCHANG</creator><creator>WANG MINGMING</creator><creator>LI TONGTONG</creator><scope>EVB</scope></search><sort><creationdate>20200904</creationdate><title>Hollow recognition method and device based on neural network, storage medium and terminal</title><author>YANG ZHONGCHANG ; WANG MINGMING ; LI TONGTONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111626370A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG ZHONGCHANG</creatorcontrib><creatorcontrib>WANG MINGMING</creatorcontrib><creatorcontrib>LI TONGTONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG ZHONGCHANG</au><au>WANG MINGMING</au><au>LI TONGTONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hollow recognition method and device based on neural network, storage medium and terminal</title><date>2020-09-04</date><risdate>2020</risdate><abstract>The invention discloses a hollow recognition method and device based on a neural network, a storage medium and a terminal, and the method comprises the steps: providing a training set and a test set,wherein the training set comprises a plurality of hollow training pictures containing hollows and a plurality of hollow-free training pictures not containing hollows, aand the test set comprises a plurality of test pictures; segmenting each hollowed-out training picture into a plurality of hollowed-out picture blocks, and segmenting each non-hollowed-out training picture into a plurality of non-hollowed-out picture blocks; training a neural network model based on the hollowed-out picture blocks and the non-hollowed-out picture blocks; performing a hollow recognition test on the test picture byusing the neural network model, wherein the neural network model comprises a convolution layer, a pooling layer, an activation layer and a 1 * N output layer. According to the invention, the identification accuracy and effici</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111626370A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Hollow recognition method and device based on neural network, storage medium and terminal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20ZHONGCHANG&rft.date=2020-09-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111626370A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true