Driver distraction detection method
The invention discloses a driver distraction detection method. Converting each frame of driver image into a grayscale image; the method comprises the following steps: firstly, extracting gray scale images corresponding to training samples, performing normalization processing and preprocessing in seq...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YAN DIQUN QIAN JIANGBO CHEN YEFANG QIN BINBIN DONG YIHONG |
description | The invention discloses a driver distraction detection method. Converting each frame of driver image into a grayscale image; the method comprises the following steps: firstly, extracting gray scale images corresponding to training samples, performing normalization processing and preprocessing in sequence, inputting one of the training samples into an initialized convolutional neural network, performing batch regularization processing on HOG features extracted from the gray scale images corresponding to the training samples, and then performing full connection layer connection to obtain HOG feature vectors; and finally, carrying out global mean pooling on an output result of each convolution layer to obtain a total feature vector composed of the feature vector and the HOG feature vector, and carrying out full connection layer and Softmax classification in the convolutional neural network in sequence to obtain a global mean pooling result of each convolution layer. Obtaining the actual action category of the dr |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111626186A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111626186A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111626186A3</originalsourceid><addsrcrecordid>eNrjZFB2KcosSy1SSMksLilKTC7JzM9TSEktSYWwclNLMvJTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGhmZGZoYWZozExagACrya6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Driver distraction detection method</title><source>esp@cenet</source><creator>YAN DIQUN ; QIAN JIANGBO ; CHEN YEFANG ; QIN BINBIN ; DONG YIHONG</creator><creatorcontrib>YAN DIQUN ; QIAN JIANGBO ; CHEN YEFANG ; QIN BINBIN ; DONG YIHONG</creatorcontrib><description>The invention discloses a driver distraction detection method. Converting each frame of driver image into a grayscale image; the method comprises the following steps: firstly, extracting gray scale images corresponding to training samples, performing normalization processing and preprocessing in sequence, inputting one of the training samples into an initialized convolutional neural network, performing batch regularization processing on HOG features extracted from the gray scale images corresponding to the training samples, and then performing full connection layer connection to obtain HOG feature vectors; and finally, carrying out global mean pooling on an output result of each convolution layer to obtain a total feature vector composed of the feature vector and the HOG feature vector, and carrying out full connection layer and Softmax classification in the convolutional neural network in sequence to obtain a global mean pooling result of each convolution layer. Obtaining the actual action category of the dr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200904&DB=EPODOC&CC=CN&NR=111626186A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200904&DB=EPODOC&CC=CN&NR=111626186A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAN DIQUN</creatorcontrib><creatorcontrib>QIAN JIANGBO</creatorcontrib><creatorcontrib>CHEN YEFANG</creatorcontrib><creatorcontrib>QIN BINBIN</creatorcontrib><creatorcontrib>DONG YIHONG</creatorcontrib><title>Driver distraction detection method</title><description>The invention discloses a driver distraction detection method. Converting each frame of driver image into a grayscale image; the method comprises the following steps: firstly, extracting gray scale images corresponding to training samples, performing normalization processing and preprocessing in sequence, inputting one of the training samples into an initialized convolutional neural network, performing batch regularization processing on HOG features extracted from the gray scale images corresponding to the training samples, and then performing full connection layer connection to obtain HOG feature vectors; and finally, carrying out global mean pooling on an output result of each convolution layer to obtain a total feature vector composed of the feature vector and the HOG feature vector, and carrying out full connection layer and Softmax classification in the convolutional neural network in sequence to obtain a global mean pooling result of each convolution layer. Obtaining the actual action category of the dr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB2KcosSy1SSMksLilKTC7JzM9TSEktSYWwclNLMvJTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGhmZGZoYWZozExagACrya6</recordid><startdate>20200904</startdate><enddate>20200904</enddate><creator>YAN DIQUN</creator><creator>QIAN JIANGBO</creator><creator>CHEN YEFANG</creator><creator>QIN BINBIN</creator><creator>DONG YIHONG</creator><scope>EVB</scope></search><sort><creationdate>20200904</creationdate><title>Driver distraction detection method</title><author>YAN DIQUN ; QIAN JIANGBO ; CHEN YEFANG ; QIN BINBIN ; DONG YIHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111626186A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>YAN DIQUN</creatorcontrib><creatorcontrib>QIAN JIANGBO</creatorcontrib><creatorcontrib>CHEN YEFANG</creatorcontrib><creatorcontrib>QIN BINBIN</creatorcontrib><creatorcontrib>DONG YIHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAN DIQUN</au><au>QIAN JIANGBO</au><au>CHEN YEFANG</au><au>QIN BINBIN</au><au>DONG YIHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Driver distraction detection method</title><date>2020-09-04</date><risdate>2020</risdate><abstract>The invention discloses a driver distraction detection method. Converting each frame of driver image into a grayscale image; the method comprises the following steps: firstly, extracting gray scale images corresponding to training samples, performing normalization processing and preprocessing in sequence, inputting one of the training samples into an initialized convolutional neural network, performing batch regularization processing on HOG features extracted from the gray scale images corresponding to the training samples, and then performing full connection layer connection to obtain HOG feature vectors; and finally, carrying out global mean pooling on an output result of each convolution layer to obtain a total feature vector composed of the feature vector and the HOG feature vector, and carrying out full connection layer and Softmax classification in the convolutional neural network in sequence to obtain a global mean pooling result of each convolution layer. Obtaining the actual action category of the dr</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111626186A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Driver distraction detection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAN%20DIQUN&rft.date=2020-09-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111626186A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |