Re-optimization training method based on existing image semantic segmentation model and application

The invention discloses a re-optimization training method based on an existing image semantic segmentation model and application. The method includes the steps of outputting the last layer of an imagesemantic segmentation neural network model; and intercepting a plurality of prediction tags with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG YONGDONG, ZHANG JIYONG, SUN YAOQI, YAN CHENGGANG, HU YOUPENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG YONGDONG
ZHANG JIYONG
SUN YAOQI
YAN CHENGGANG
HU YOUPENG
description The invention discloses a re-optimization training method based on an existing image semantic segmentation model and application. The method includes the steps of outputting the last layer of an imagesemantic segmentation neural network model; and intercepting a plurality of prediction tags with the highest prediction probability from all pixels close to a semantic edge, performing feature distance measurement and calculation through a re-optimization model, and taking the nearest tag as the correction prediction tag of the pixel, thereby achieving the purpose of improving the semantic segmentation prediction accuracy. The invention provides a boundary deviation elimination method based on re-identification, eliminates uncertainty of a semantic edge adjacent region, and is an improvementof a mature image semantic segmentation model. The optimization model focuses on the correction task of the semantic edge. In addition, only the image semantic edge area is optimized, and excessive operation time and space bur
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111612802A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111612802A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111612802A3</originalsourceid><addsrcrecordid>eNqNizsKAkEQRDcxEPUO7QEWnBXEVBbFyEDMpZ0p14adnsHpQDy96-cARvWoVzWu_BF1yiZRnmySlOzOoqIdRdgtBbpwQaBB4CHF3kIid6CCyGriB-gi1L7vmAJ6Yg3EOffiP-20Gl25L5j9clLNd9tTu6-R0xkls4fCzu3BObdyzXrRbJb_bF7wWD8C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Re-optimization training method based on existing image semantic segmentation model and application</title><source>esp@cenet</source><creator>ZHANG YONGDONG ; ZHANG JIYONG ; SUN YAOQI ; YAN CHENGGANG ; HU YOUPENG</creator><creatorcontrib>ZHANG YONGDONG ; ZHANG JIYONG ; SUN YAOQI ; YAN CHENGGANG ; HU YOUPENG</creatorcontrib><description>The invention discloses a re-optimization training method based on an existing image semantic segmentation model and application. The method includes the steps of outputting the last layer of an imagesemantic segmentation neural network model; and intercepting a plurality of prediction tags with the highest prediction probability from all pixels close to a semantic edge, performing feature distance measurement and calculation through a re-optimization model, and taking the nearest tag as the correction prediction tag of the pixel, thereby achieving the purpose of improving the semantic segmentation prediction accuracy. The invention provides a boundary deviation elimination method based on re-identification, eliminates uncertainty of a semantic edge adjacent region, and is an improvementof a mature image semantic segmentation model. The optimization model focuses on the correction task of the semantic edge. In addition, only the image semantic edge area is optimized, and excessive operation time and space bur</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200901&amp;DB=EPODOC&amp;CC=CN&amp;NR=111612802A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200901&amp;DB=EPODOC&amp;CC=CN&amp;NR=111612802A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YONGDONG</creatorcontrib><creatorcontrib>ZHANG JIYONG</creatorcontrib><creatorcontrib>SUN YAOQI</creatorcontrib><creatorcontrib>YAN CHENGGANG</creatorcontrib><creatorcontrib>HU YOUPENG</creatorcontrib><title>Re-optimization training method based on existing image semantic segmentation model and application</title><description>The invention discloses a re-optimization training method based on an existing image semantic segmentation model and application. The method includes the steps of outputting the last layer of an imagesemantic segmentation neural network model; and intercepting a plurality of prediction tags with the highest prediction probability from all pixels close to a semantic edge, performing feature distance measurement and calculation through a re-optimization model, and taking the nearest tag as the correction prediction tag of the pixel, thereby achieving the purpose of improving the semantic segmentation prediction accuracy. The invention provides a boundary deviation elimination method based on re-identification, eliminates uncertainty of a semantic edge adjacent region, and is an improvementof a mature image semantic segmentation model. The optimization model focuses on the correction task of the semantic edge. In addition, only the image semantic edge area is optimized, and excessive operation time and space bur</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsKAkEQRDcxEPUO7QEWnBXEVBbFyEDMpZ0p14adnsHpQDy96-cARvWoVzWu_BF1yiZRnmySlOzOoqIdRdgtBbpwQaBB4CHF3kIid6CCyGriB-gi1L7vmAJ6Yg3EOffiP-20Gl25L5j9clLNd9tTu6-R0xkls4fCzu3BObdyzXrRbJb_bF7wWD8C</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>ZHANG YONGDONG</creator><creator>ZHANG JIYONG</creator><creator>SUN YAOQI</creator><creator>YAN CHENGGANG</creator><creator>HU YOUPENG</creator><scope>EVB</scope></search><sort><creationdate>20200901</creationdate><title>Re-optimization training method based on existing image semantic segmentation model and application</title><author>ZHANG YONGDONG ; ZHANG JIYONG ; SUN YAOQI ; YAN CHENGGANG ; HU YOUPENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111612802A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YONGDONG</creatorcontrib><creatorcontrib>ZHANG JIYONG</creatorcontrib><creatorcontrib>SUN YAOQI</creatorcontrib><creatorcontrib>YAN CHENGGANG</creatorcontrib><creatorcontrib>HU YOUPENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YONGDONG</au><au>ZHANG JIYONG</au><au>SUN YAOQI</au><au>YAN CHENGGANG</au><au>HU YOUPENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Re-optimization training method based on existing image semantic segmentation model and application</title><date>2020-09-01</date><risdate>2020</risdate><abstract>The invention discloses a re-optimization training method based on an existing image semantic segmentation model and application. The method includes the steps of outputting the last layer of an imagesemantic segmentation neural network model; and intercepting a plurality of prediction tags with the highest prediction probability from all pixels close to a semantic edge, performing feature distance measurement and calculation through a re-optimization model, and taking the nearest tag as the correction prediction tag of the pixel, thereby achieving the purpose of improving the semantic segmentation prediction accuracy. The invention provides a boundary deviation elimination method based on re-identification, eliminates uncertainty of a semantic edge adjacent region, and is an improvementof a mature image semantic segmentation model. The optimization model focuses on the correction task of the semantic edge. In addition, only the image semantic edge area is optimized, and excessive operation time and space bur</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111612802A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Re-optimization training method based on existing image semantic segmentation model and application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YONGDONG&rft.date=2020-09-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111612802A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true