Network embedding method based on attribute and structure deep fusion and model thereof

The invention discloses a network embedding method based on attribute and structure deep fusion. The network embedding method comprises the following steps: S1, obtaining node attribute characteristics of a reconstructed coding layer; S2, obtaining a node attribute information sequence with node att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG XIANKUN, LUO XUEXIONG, MA YUNBIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG XIANKUN
LUO XUEXIONG
MA YUNBIN
description The invention discloses a network embedding method based on attribute and structure deep fusion. The network embedding method comprises the following steps: S1, obtaining node attribute characteristics of a reconstructed coding layer; S2, obtaining a node attribute information sequence with node attribute characteristics; and S3, translating the node attribute information sequence into a node identity sequence to obtain node embedded vector representation capable of retaining the network structure and the node attribute information of the original network. The invention further discloses a network embedding model based on attribute and structure deep fusion. The network embedding model comprises a multi-modal attribute sensing module, an attribute embedding layer and a multi-hop structuresensing module. The multi-mode attribute sensing module is connected with the multi-hop structure sensing module through the attribute embedding layer. According to the network embedding method basedon attribute and structure
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111598223A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111598223A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111598223A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuFtLES9w3gAiyQIWkpQrFIJlmGT-dcEk51ldxavr4IHsHrF-5bm3kBfEp-EuQPz6B80Qwdh6mwCk3iyqnHssoKsZ0oac685ghgI5HIav-ZzZmFMpAMixK3NwtkpYfPrymwv51t93SFIixRsDw9t66Yoiv3xUJbVqfrHvAFryDn_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Network embedding method based on attribute and structure deep fusion and model thereof</title><source>esp@cenet</source><creator>ZHANG XIANKUN ; LUO XUEXIONG ; MA YUNBIN</creator><creatorcontrib>ZHANG XIANKUN ; LUO XUEXIONG ; MA YUNBIN</creatorcontrib><description>The invention discloses a network embedding method based on attribute and structure deep fusion. The network embedding method comprises the following steps: S1, obtaining node attribute characteristics of a reconstructed coding layer; S2, obtaining a node attribute information sequence with node attribute characteristics; and S3, translating the node attribute information sequence into a node identity sequence to obtain node embedded vector representation capable of retaining the network structure and the node attribute information of the original network. The invention further discloses a network embedding model based on attribute and structure deep fusion. The network embedding model comprises a multi-modal attribute sensing module, an attribute embedding layer and a multi-hop structuresensing module. The multi-mode attribute sensing module is connected with the multi-hop structure sensing module through the attribute embedding layer. According to the network embedding method basedon attribute and structure</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200828&amp;DB=EPODOC&amp;CC=CN&amp;NR=111598223A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200828&amp;DB=EPODOC&amp;CC=CN&amp;NR=111598223A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG XIANKUN</creatorcontrib><creatorcontrib>LUO XUEXIONG</creatorcontrib><creatorcontrib>MA YUNBIN</creatorcontrib><title>Network embedding method based on attribute and structure deep fusion and model thereof</title><description>The invention discloses a network embedding method based on attribute and structure deep fusion. The network embedding method comprises the following steps: S1, obtaining node attribute characteristics of a reconstructed coding layer; S2, obtaining a node attribute information sequence with node attribute characteristics; and S3, translating the node attribute information sequence into a node identity sequence to obtain node embedded vector representation capable of retaining the network structure and the node attribute information of the original network. The invention further discloses a network embedding model based on attribute and structure deep fusion. The network embedding model comprises a multi-modal attribute sensing module, an attribute embedding layer and a multi-hop structuresensing module. The multi-mode attribute sensing module is connected with the multi-hop structure sensing module through the attribute embedding layer. According to the network embedding method basedon attribute and structure</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuFtLES9w3gAiyQIWkpQrFIJlmGT-dcEk51ldxavr4IHsHrF-5bm3kBfEp-EuQPz6B80Qwdh6mwCk3iyqnHssoKsZ0oac685ghgI5HIav-ZzZmFMpAMixK3NwtkpYfPrymwv51t93SFIixRsDw9t66Yoiv3xUJbVqfrHvAFryDn_</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>ZHANG XIANKUN</creator><creator>LUO XUEXIONG</creator><creator>MA YUNBIN</creator><scope>EVB</scope></search><sort><creationdate>20200828</creationdate><title>Network embedding method based on attribute and structure deep fusion and model thereof</title><author>ZHANG XIANKUN ; LUO XUEXIONG ; MA YUNBIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111598223A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG XIANKUN</creatorcontrib><creatorcontrib>LUO XUEXIONG</creatorcontrib><creatorcontrib>MA YUNBIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG XIANKUN</au><au>LUO XUEXIONG</au><au>MA YUNBIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Network embedding method based on attribute and structure deep fusion and model thereof</title><date>2020-08-28</date><risdate>2020</risdate><abstract>The invention discloses a network embedding method based on attribute and structure deep fusion. The network embedding method comprises the following steps: S1, obtaining node attribute characteristics of a reconstructed coding layer; S2, obtaining a node attribute information sequence with node attribute characteristics; and S3, translating the node attribute information sequence into a node identity sequence to obtain node embedded vector representation capable of retaining the network structure and the node attribute information of the original network. The invention further discloses a network embedding model based on attribute and structure deep fusion. The network embedding model comprises a multi-modal attribute sensing module, an attribute embedding layer and a multi-hop structuresensing module. The multi-mode attribute sensing module is connected with the multi-hop structure sensing module through the attribute embedding layer. According to the network embedding method basedon attribute and structure</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111598223A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Network embedding method based on attribute and structure deep fusion and model thereof
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20XIANKUN&rft.date=2020-08-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111598223A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true