GPU-based deep neural network model training method and apparatus, and computer device
The invention relates to a GPU-based deep neural network model training method and device, computer equipment and a storage medium. The method comprises the steps: when a deep neural network model istrained for the first time, compressing output data of all hidden layers to a GPU main memory for sto...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI KEQIN TANG ZHUO TAN GUANGHUA LI KENLI LIU CHUBO YANG WANGDONG CHEN ZAILONG ZHU NINGBO XIAO GUOQING ZHOU XU |
description | The invention relates to a GPU-based deep neural network model training method and device, computer equipment and a storage medium. The method comprises the steps: when a deep neural network model istrained for the first time, compressing output data of all hidden layers to a GPU main memory for storage, and obtaining the compressed output data and the main memory allowance of the GPU; when the main memory margin does not reach the preset margin threshold, determining a preliminary hidden layer according to the sparse degree value of the output data and the time proportion of the compressed output data occupying the GPU main memory; when the deep neural network model is iteratively trained, according to the preliminary hidden layer, compressing output data of the preliminary hidden layerto a GPU main memory for storage to obtain a preliminary margin of the GPU main memory until the preliminary margin reaches a preset margin threshold; and when the preliminary margin reaches a presetmargin threshold, determini |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111461293A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111461293A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111461293A3</originalsourceid><addsrcrecordid>eNrjZAhzDwjVTUosTk1RSElNLVDISy0tSswBUiXl-UXZCrn5Kak5CiVFiZl5mXnpCrmpJRn5KQqJeUBcUJBYlFhSWqwD5ibn5xaUlqQWAU0py0xO5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQCvinf0MDQ1NzAyNLI0djYlRAwDNQjkM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GPU-based deep neural network model training method and apparatus, and computer device</title><source>esp@cenet</source><creator>LI KEQIN ; TANG ZHUO ; TAN GUANGHUA ; LI KENLI ; LIU CHUBO ; YANG WANGDONG ; CHEN ZAILONG ; ZHU NINGBO ; XIAO GUOQING ; ZHOU XU</creator><creatorcontrib>LI KEQIN ; TANG ZHUO ; TAN GUANGHUA ; LI KENLI ; LIU CHUBO ; YANG WANGDONG ; CHEN ZAILONG ; ZHU NINGBO ; XIAO GUOQING ; ZHOU XU</creatorcontrib><description>The invention relates to a GPU-based deep neural network model training method and device, computer equipment and a storage medium. The method comprises the steps: when a deep neural network model istrained for the first time, compressing output data of all hidden layers to a GPU main memory for storage, and obtaining the compressed output data and the main memory allowance of the GPU; when the main memory margin does not reach the preset margin threshold, determining a preliminary hidden layer according to the sparse degree value of the output data and the time proportion of the compressed output data occupying the GPU main memory; when the deep neural network model is iteratively trained, according to the preliminary hidden layer, compressing output data of the preliminary hidden layerto a GPU main memory for storage to obtain a preliminary margin of the GPU main memory until the preliminary margin reaches a preset margin threshold; and when the preliminary margin reaches a presetmargin threshold, determini</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200728&DB=EPODOC&CC=CN&NR=111461293A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200728&DB=EPODOC&CC=CN&NR=111461293A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI KEQIN</creatorcontrib><creatorcontrib>TANG ZHUO</creatorcontrib><creatorcontrib>TAN GUANGHUA</creatorcontrib><creatorcontrib>LI KENLI</creatorcontrib><creatorcontrib>LIU CHUBO</creatorcontrib><creatorcontrib>YANG WANGDONG</creatorcontrib><creatorcontrib>CHEN ZAILONG</creatorcontrib><creatorcontrib>ZHU NINGBO</creatorcontrib><creatorcontrib>XIAO GUOQING</creatorcontrib><creatorcontrib>ZHOU XU</creatorcontrib><title>GPU-based deep neural network model training method and apparatus, and computer device</title><description>The invention relates to a GPU-based deep neural network model training method and device, computer equipment and a storage medium. The method comprises the steps: when a deep neural network model istrained for the first time, compressing output data of all hidden layers to a GPU main memory for storage, and obtaining the compressed output data and the main memory allowance of the GPU; when the main memory margin does not reach the preset margin threshold, determining a preliminary hidden layer according to the sparse degree value of the output data and the time proportion of the compressed output data occupying the GPU main memory; when the deep neural network model is iteratively trained, according to the preliminary hidden layer, compressing output data of the preliminary hidden layerto a GPU main memory for storage to obtain a preliminary margin of the GPU main memory until the preliminary margin reaches a preset margin threshold; and when the preliminary margin reaches a presetmargin threshold, determini</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAhzDwjVTUosTk1RSElNLVDISy0tSswBUiXl-UXZCrn5Kak5CiVFiZl5mXnpCrmpJRn5KQqJeUBcUJBYlFhSWqwD5ibn5xaUlqQWAU0py0xO5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQCvinf0MDQ1NzAyNLI0djYlRAwDNQjkM</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>LI KEQIN</creator><creator>TANG ZHUO</creator><creator>TAN GUANGHUA</creator><creator>LI KENLI</creator><creator>LIU CHUBO</creator><creator>YANG WANGDONG</creator><creator>CHEN ZAILONG</creator><creator>ZHU NINGBO</creator><creator>XIAO GUOQING</creator><creator>ZHOU XU</creator><scope>EVB</scope></search><sort><creationdate>20200728</creationdate><title>GPU-based deep neural network model training method and apparatus, and computer device</title><author>LI KEQIN ; TANG ZHUO ; TAN GUANGHUA ; LI KENLI ; LIU CHUBO ; YANG WANGDONG ; CHEN ZAILONG ; ZHU NINGBO ; XIAO GUOQING ; ZHOU XU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111461293A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI KEQIN</creatorcontrib><creatorcontrib>TANG ZHUO</creatorcontrib><creatorcontrib>TAN GUANGHUA</creatorcontrib><creatorcontrib>LI KENLI</creatorcontrib><creatorcontrib>LIU CHUBO</creatorcontrib><creatorcontrib>YANG WANGDONG</creatorcontrib><creatorcontrib>CHEN ZAILONG</creatorcontrib><creatorcontrib>ZHU NINGBO</creatorcontrib><creatorcontrib>XIAO GUOQING</creatorcontrib><creatorcontrib>ZHOU XU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI KEQIN</au><au>TANG ZHUO</au><au>TAN GUANGHUA</au><au>LI KENLI</au><au>LIU CHUBO</au><au>YANG WANGDONG</au><au>CHEN ZAILONG</au><au>ZHU NINGBO</au><au>XIAO GUOQING</au><au>ZHOU XU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GPU-based deep neural network model training method and apparatus, and computer device</title><date>2020-07-28</date><risdate>2020</risdate><abstract>The invention relates to a GPU-based deep neural network model training method and device, computer equipment and a storage medium. The method comprises the steps: when a deep neural network model istrained for the first time, compressing output data of all hidden layers to a GPU main memory for storage, and obtaining the compressed output data and the main memory allowance of the GPU; when the main memory margin does not reach the preset margin threshold, determining a preliminary hidden layer according to the sparse degree value of the output data and the time proportion of the compressed output data occupying the GPU main memory; when the deep neural network model is iteratively trained, according to the preliminary hidden layer, compressing output data of the preliminary hidden layerto a GPU main memory for storage to obtain a preliminary margin of the GPU main memory until the preliminary margin reaches a preset margin threshold; and when the preliminary margin reaches a presetmargin threshold, determini</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111461293A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | GPU-based deep neural network model training method and apparatus, and computer device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20KEQIN&rft.date=2020-07-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111461293A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |