Self-adaptive CU splitting decision-making method based on deep learning and multi-feature fusion

The invention provides an adaptive CU splitting decision method based on deep learning and multi-feature fusion. The method comprises the steps: firstly, calculating the texture complexity SD of a current CU through standard deviation, building a threshold model through a quantization parameter func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG WEIWEI, ZHAO YONGBO, WANG XIAO, WEI TAO, WU QINGGANG, JIANG BIN, ZHAO JINCHAO, WANG YIHAN, HUANG LIXUN, ZHANG QIUWEN, GUO RUIXIAO, CHANG HUAWEN, WANG ZHAOBO, CUI TENGYAO, QIAN XIAOLIANG, SUN LIJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG WEIWEI
ZHAO YONGBO
WANG XIAO
WEI TAO
WU QINGGANG
JIANG BIN
ZHAO JINCHAO
WANG YIHAN
HUANG LIXUN
ZHANG QIUWEN
GUO RUIXIAO
CHANG HUAWEN
WANG ZHAOBO
CUI TENGYAO
QIAN XIAOLIANG
SUN LIJUN
description The invention provides an adaptive CU splitting decision method based on deep learning and multi-feature fusion. The method comprises the steps: firstly, calculating the texture complexity SD of a current CU through standard deviation, building a threshold model through a quantization parameter function and a depth function, and dividing the current CU into a complex CU and a uniform CU; secondly,if the complex CU belongs to the edge CU, judging whether the complex CU is split or not by utilizing a CNN structure based on multi-feature fusion; otherwise, judging whether the complex CU is splitor not by utilizing the self-adaptive CNN structure. According to the method, deep learning and multi-feature fusion are combined, and the problem of coding complexity is solved. The CNN structure based on multi-feature fusion and the CNN structure based on self-adaptation can successfully process the training samples, calculation of rate distortion RDO of all CU and complex CU is avoided, and therefore the calculation co
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111429497A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111429497A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111429497A3</originalsourceid><addsrcrecordid>eNqNi7EKwjAURbs4iPoPzw_IEC1IRymKk4s6l2dzo8E0Cc2L368FP8DpcDn3zCu-wFvFhpO4N6i9UU7eibjwIIPeZReDGvg17QHyjIbunGEohq9HIg8ew2Q5GBqKF6csWMoIsmWql9XMss9Y_bio1sfDtT0ppNghJ-4RIF171lrXm6ZudvvtP58P29g9dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-adaptive CU splitting decision-making method based on deep learning and multi-feature fusion</title><source>esp@cenet</source><creator>ZHANG WEIWEI ; ZHAO YONGBO ; WANG XIAO ; WEI TAO ; WU QINGGANG ; JIANG BIN ; ZHAO JINCHAO ; WANG YIHAN ; HUANG LIXUN ; ZHANG QIUWEN ; GUO RUIXIAO ; CHANG HUAWEN ; WANG ZHAOBO ; CUI TENGYAO ; QIAN XIAOLIANG ; SUN LIJUN</creator><creatorcontrib>ZHANG WEIWEI ; ZHAO YONGBO ; WANG XIAO ; WEI TAO ; WU QINGGANG ; JIANG BIN ; ZHAO JINCHAO ; WANG YIHAN ; HUANG LIXUN ; ZHANG QIUWEN ; GUO RUIXIAO ; CHANG HUAWEN ; WANG ZHAOBO ; CUI TENGYAO ; QIAN XIAOLIANG ; SUN LIJUN</creatorcontrib><description>The invention provides an adaptive CU splitting decision method based on deep learning and multi-feature fusion. The method comprises the steps: firstly, calculating the texture complexity SD of a current CU through standard deviation, building a threshold model through a quantization parameter function and a depth function, and dividing the current CU into a complex CU and a uniform CU; secondly,if the complex CU belongs to the edge CU, judging whether the complex CU is split or not by utilizing a CNN structure based on multi-feature fusion; otherwise, judging whether the complex CU is splitor not by utilizing the self-adaptive CNN structure. According to the method, deep learning and multi-feature fusion are combined, and the problem of coding complexity is solved. The CNN structure based on multi-feature fusion and the CNN structure based on self-adaptation can successfully process the training samples, calculation of rate distortion RDO of all CU and complex CU is avoided, and therefore the calculation co</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200717&amp;DB=EPODOC&amp;CC=CN&amp;NR=111429497A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200717&amp;DB=EPODOC&amp;CC=CN&amp;NR=111429497A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG WEIWEI</creatorcontrib><creatorcontrib>ZHAO YONGBO</creatorcontrib><creatorcontrib>WANG XIAO</creatorcontrib><creatorcontrib>WEI TAO</creatorcontrib><creatorcontrib>WU QINGGANG</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>ZHAO JINCHAO</creatorcontrib><creatorcontrib>WANG YIHAN</creatorcontrib><creatorcontrib>HUANG LIXUN</creatorcontrib><creatorcontrib>ZHANG QIUWEN</creatorcontrib><creatorcontrib>GUO RUIXIAO</creatorcontrib><creatorcontrib>CHANG HUAWEN</creatorcontrib><creatorcontrib>WANG ZHAOBO</creatorcontrib><creatorcontrib>CUI TENGYAO</creatorcontrib><creatorcontrib>QIAN XIAOLIANG</creatorcontrib><creatorcontrib>SUN LIJUN</creatorcontrib><title>Self-adaptive CU splitting decision-making method based on deep learning and multi-feature fusion</title><description>The invention provides an adaptive CU splitting decision method based on deep learning and multi-feature fusion. The method comprises the steps: firstly, calculating the texture complexity SD of a current CU through standard deviation, building a threshold model through a quantization parameter function and a depth function, and dividing the current CU into a complex CU and a uniform CU; secondly,if the complex CU belongs to the edge CU, judging whether the complex CU is split or not by utilizing a CNN structure based on multi-feature fusion; otherwise, judging whether the complex CU is splitor not by utilizing the self-adaptive CNN structure. According to the method, deep learning and multi-feature fusion are combined, and the problem of coding complexity is solved. The CNN structure based on multi-feature fusion and the CNN structure based on self-adaptation can successfully process the training samples, calculation of rate distortion RDO of all CU and complex CU is avoided, and therefore the calculation co</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwjAURbs4iPoPzw_IEC1IRymKk4s6l2dzo8E0Cc2L368FP8DpcDn3zCu-wFvFhpO4N6i9UU7eibjwIIPeZReDGvg17QHyjIbunGEohq9HIg8ew2Q5GBqKF6csWMoIsmWql9XMss9Y_bio1sfDtT0ppNghJ-4RIF171lrXm6ZudvvtP58P29g9dw</recordid><startdate>20200717</startdate><enddate>20200717</enddate><creator>ZHANG WEIWEI</creator><creator>ZHAO YONGBO</creator><creator>WANG XIAO</creator><creator>WEI TAO</creator><creator>WU QINGGANG</creator><creator>JIANG BIN</creator><creator>ZHAO JINCHAO</creator><creator>WANG YIHAN</creator><creator>HUANG LIXUN</creator><creator>ZHANG QIUWEN</creator><creator>GUO RUIXIAO</creator><creator>CHANG HUAWEN</creator><creator>WANG ZHAOBO</creator><creator>CUI TENGYAO</creator><creator>QIAN XIAOLIANG</creator><creator>SUN LIJUN</creator><scope>EVB</scope></search><sort><creationdate>20200717</creationdate><title>Self-adaptive CU splitting decision-making method based on deep learning and multi-feature fusion</title><author>ZHANG WEIWEI ; ZHAO YONGBO ; WANG XIAO ; WEI TAO ; WU QINGGANG ; JIANG BIN ; ZHAO JINCHAO ; WANG YIHAN ; HUANG LIXUN ; ZHANG QIUWEN ; GUO RUIXIAO ; CHANG HUAWEN ; WANG ZHAOBO ; CUI TENGYAO ; QIAN XIAOLIANG ; SUN LIJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111429497A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG WEIWEI</creatorcontrib><creatorcontrib>ZHAO YONGBO</creatorcontrib><creatorcontrib>WANG XIAO</creatorcontrib><creatorcontrib>WEI TAO</creatorcontrib><creatorcontrib>WU QINGGANG</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>ZHAO JINCHAO</creatorcontrib><creatorcontrib>WANG YIHAN</creatorcontrib><creatorcontrib>HUANG LIXUN</creatorcontrib><creatorcontrib>ZHANG QIUWEN</creatorcontrib><creatorcontrib>GUO RUIXIAO</creatorcontrib><creatorcontrib>CHANG HUAWEN</creatorcontrib><creatorcontrib>WANG ZHAOBO</creatorcontrib><creatorcontrib>CUI TENGYAO</creatorcontrib><creatorcontrib>QIAN XIAOLIANG</creatorcontrib><creatorcontrib>SUN LIJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG WEIWEI</au><au>ZHAO YONGBO</au><au>WANG XIAO</au><au>WEI TAO</au><au>WU QINGGANG</au><au>JIANG BIN</au><au>ZHAO JINCHAO</au><au>WANG YIHAN</au><au>HUANG LIXUN</au><au>ZHANG QIUWEN</au><au>GUO RUIXIAO</au><au>CHANG HUAWEN</au><au>WANG ZHAOBO</au><au>CUI TENGYAO</au><au>QIAN XIAOLIANG</au><au>SUN LIJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-adaptive CU splitting decision-making method based on deep learning and multi-feature fusion</title><date>2020-07-17</date><risdate>2020</risdate><abstract>The invention provides an adaptive CU splitting decision method based on deep learning and multi-feature fusion. The method comprises the steps: firstly, calculating the texture complexity SD of a current CU through standard deviation, building a threshold model through a quantization parameter function and a depth function, and dividing the current CU into a complex CU and a uniform CU; secondly,if the complex CU belongs to the edge CU, judging whether the complex CU is split or not by utilizing a CNN structure based on multi-feature fusion; otherwise, judging whether the complex CU is splitor not by utilizing the self-adaptive CNN structure. According to the method, deep learning and multi-feature fusion are combined, and the problem of coding complexity is solved. The CNN structure based on multi-feature fusion and the CNN structure based on self-adaptation can successfully process the training samples, calculation of rate distortion RDO of all CU and complex CU is avoided, and therefore the calculation co</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111429497A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Self-adaptive CU splitting decision-making method based on deep learning and multi-feature fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20WEIWEI&rft.date=2020-07-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111429497A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true