Electric power complaint work order multi-label text classification method based on self-attention mechanism

The invention provides an electric power complaint work order multi-label text classification method based on a self-attention mechanism. The dependence between labels is effectively coded by using the self-attention mechanism. The method may efficiently encode dependencies between tags using a self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUO KAILONG, CHEN JIE, WENG LIGUO, FAN HUA, WANG XIAOFENG, XU SHUYAN, JIANG CHUAN, TAO YANZENG, ZHOU YAN, SHI LINGZHEN, WEI YAOWEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUO KAILONG
CHEN JIE
WENG LIGUO
FAN HUA
WANG XIAOFENG
XU SHUYAN
JIANG CHUAN
TAO YANZENG
ZHOU YAN
SHI LINGZHEN
WEI YAOWEN
description The invention provides an electric power complaint work order multi-label text classification method based on a self-attention mechanism. The dependence between labels is effectively coded by using the self-attention mechanism. The method may efficiently encode dependencies between tags using a self-attention mechanism. The method not only effectively solves the classification problem of the powercomplaint work order text, but also overcomes the defect that the dependency relationship between labels is ignored in the prior art. 本申请提出了基于自注意力机制的电力投诉工单多标签文本分类方法,使用自注意力机制对标签之间的依赖性进行有效编码。该方法可使用自注意力机制对标签之间的依赖性进行有效编码。不仅有效解决了电力投诉工单文本的分类问题,还克服了现有技术忽略标签之间依赖关系的缺点和不足。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111428038A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111428038A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111428038A3</originalsourceid><addsrcrecordid>eNqNijsOglAQRWksjLqHcQEkIha0hmCsrOzJMAzhxXmfvBmDy5fCBVjdnHPutpBOmCw7ghQXzkDRJ0EXDJaYXxDzuEr_FnOl4MACxh8DElR1kyM0FwN4tjmOMKDyCCsry1SiGYdfphmDU78vNhOK8uG3u-J4657tveQUe9aExIGtbx9VVV3OzalurvU_ny-CAEJx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electric power complaint work order multi-label text classification method based on self-attention mechanism</title><source>esp@cenet</source><creator>HUO KAILONG ; CHEN JIE ; WENG LIGUO ; FAN HUA ; WANG XIAOFENG ; XU SHUYAN ; JIANG CHUAN ; TAO YANZENG ; ZHOU YAN ; SHI LINGZHEN ; WEI YAOWEN</creator><creatorcontrib>HUO KAILONG ; CHEN JIE ; WENG LIGUO ; FAN HUA ; WANG XIAOFENG ; XU SHUYAN ; JIANG CHUAN ; TAO YANZENG ; ZHOU YAN ; SHI LINGZHEN ; WEI YAOWEN</creatorcontrib><description>The invention provides an electric power complaint work order multi-label text classification method based on a self-attention mechanism. The dependence between labels is effectively coded by using the self-attention mechanism. The method may efficiently encode dependencies between tags using a self-attention mechanism. The method not only effectively solves the classification problem of the powercomplaint work order text, but also overcomes the defect that the dependency relationship between labels is ignored in the prior art. 本申请提出了基于自注意力机制的电力投诉工单多标签文本分类方法,使用自注意力机制对标签之间的依赖性进行有效编码。该方法可使用自注意力机制对标签之间的依赖性进行有效编码。不仅有效解决了电力投诉工单文本的分类问题,还克服了现有技术忽略标签之间依赖关系的缺点和不足。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200717&amp;DB=EPODOC&amp;CC=CN&amp;NR=111428038A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200717&amp;DB=EPODOC&amp;CC=CN&amp;NR=111428038A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUO KAILONG</creatorcontrib><creatorcontrib>CHEN JIE</creatorcontrib><creatorcontrib>WENG LIGUO</creatorcontrib><creatorcontrib>FAN HUA</creatorcontrib><creatorcontrib>WANG XIAOFENG</creatorcontrib><creatorcontrib>XU SHUYAN</creatorcontrib><creatorcontrib>JIANG CHUAN</creatorcontrib><creatorcontrib>TAO YANZENG</creatorcontrib><creatorcontrib>ZHOU YAN</creatorcontrib><creatorcontrib>SHI LINGZHEN</creatorcontrib><creatorcontrib>WEI YAOWEN</creatorcontrib><title>Electric power complaint work order multi-label text classification method based on self-attention mechanism</title><description>The invention provides an electric power complaint work order multi-label text classification method based on a self-attention mechanism. The dependence between labels is effectively coded by using the self-attention mechanism. The method may efficiently encode dependencies between tags using a self-attention mechanism. The method not only effectively solves the classification problem of the powercomplaint work order text, but also overcomes the defect that the dependency relationship between labels is ignored in the prior art. 本申请提出了基于自注意力机制的电力投诉工单多标签文本分类方法,使用自注意力机制对标签之间的依赖性进行有效编码。该方法可使用自注意力机制对标签之间的依赖性进行有效编码。不仅有效解决了电力投诉工单文本的分类问题,还克服了现有技术忽略标签之间依赖关系的缺点和不足。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsOglAQRWksjLqHcQEkIha0hmCsrOzJMAzhxXmfvBmDy5fCBVjdnHPutpBOmCw7ghQXzkDRJ0EXDJaYXxDzuEr_FnOl4MACxh8DElR1kyM0FwN4tjmOMKDyCCsry1SiGYdfphmDU78vNhOK8uG3u-J4657tveQUe9aExIGtbx9VVV3OzalurvU_ny-CAEJx</recordid><startdate>20200717</startdate><enddate>20200717</enddate><creator>HUO KAILONG</creator><creator>CHEN JIE</creator><creator>WENG LIGUO</creator><creator>FAN HUA</creator><creator>WANG XIAOFENG</creator><creator>XU SHUYAN</creator><creator>JIANG CHUAN</creator><creator>TAO YANZENG</creator><creator>ZHOU YAN</creator><creator>SHI LINGZHEN</creator><creator>WEI YAOWEN</creator><scope>EVB</scope></search><sort><creationdate>20200717</creationdate><title>Electric power complaint work order multi-label text classification method based on self-attention mechanism</title><author>HUO KAILONG ; CHEN JIE ; WENG LIGUO ; FAN HUA ; WANG XIAOFENG ; XU SHUYAN ; JIANG CHUAN ; TAO YANZENG ; ZHOU YAN ; SHI LINGZHEN ; WEI YAOWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111428038A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>HUO KAILONG</creatorcontrib><creatorcontrib>CHEN JIE</creatorcontrib><creatorcontrib>WENG LIGUO</creatorcontrib><creatorcontrib>FAN HUA</creatorcontrib><creatorcontrib>WANG XIAOFENG</creatorcontrib><creatorcontrib>XU SHUYAN</creatorcontrib><creatorcontrib>JIANG CHUAN</creatorcontrib><creatorcontrib>TAO YANZENG</creatorcontrib><creatorcontrib>ZHOU YAN</creatorcontrib><creatorcontrib>SHI LINGZHEN</creatorcontrib><creatorcontrib>WEI YAOWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUO KAILONG</au><au>CHEN JIE</au><au>WENG LIGUO</au><au>FAN HUA</au><au>WANG XIAOFENG</au><au>XU SHUYAN</au><au>JIANG CHUAN</au><au>TAO YANZENG</au><au>ZHOU YAN</au><au>SHI LINGZHEN</au><au>WEI YAOWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electric power complaint work order multi-label text classification method based on self-attention mechanism</title><date>2020-07-17</date><risdate>2020</risdate><abstract>The invention provides an electric power complaint work order multi-label text classification method based on a self-attention mechanism. The dependence between labels is effectively coded by using the self-attention mechanism. The method may efficiently encode dependencies between tags using a self-attention mechanism. The method not only effectively solves the classification problem of the powercomplaint work order text, but also overcomes the defect that the dependency relationship between labels is ignored in the prior art. 本申请提出了基于自注意力机制的电力投诉工单多标签文本分类方法,使用自注意力机制对标签之间的依赖性进行有效编码。该方法可使用自注意力机制对标签之间的依赖性进行有效编码。不仅有效解决了电力投诉工单文本的分类问题,还克服了现有技术忽略标签之间依赖关系的缺点和不足。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111428038A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Electric power complaint work order multi-label text classification method based on self-attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUO%20KAILONG&rft.date=2020-07-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111428038A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true