Workpiece surface defect detection method based on deep learning

The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG WEIJUN, HAN ZHANGXIU, LEI QUJIANG, XU JIE, GUI GUANGCHAO, LI XIUHAO, LIANG BO, LIU JI, PAN YIPENG, LIU JUNHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG WEIJUN
HAN ZHANGXIU
LEI QUJIANG
XU JIE
GUI GUANGCHAO
LI XIUHAO
LIANG BO
LIU JI
PAN YIPENG
LIU JUNHAO
description The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural network model to obtain feature maps of six different layers; carrying out multi-scale feature fusion prediction by adopting a feature pyramid feature map, obtaining and generating four anchor box prediction target bounding boxes by using a K-means clustering algorithm, and predicting categories by using a cross entropy loss function; removing a redundant prediction bounding box through a non-maximum suppression algorithm; and outputting the position information and types of the workpiece surface defects. The method solves the problems of low detection efficiency and poor precision of manual detection and physical detection methods, overcomes the problem of poor adaptability of traditional machine vision defect detecti
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111415329A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111415329A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111415329A3</originalsourceid><addsrcrecordid>eNrjZHAIzy_KLshMTU5VKC4tSksE0impaanJJUCqBEhl5ucp5KaWZOSnKCQlFqemKAD5KampBQo5qYlFeZl56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4AGhiXmpJvLOfoaGhiaGpsZGlozExagDEBzEk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Workpiece surface defect detection method based on deep learning</title><source>esp@cenet</source><creator>WANG WEIJUN ; HAN ZHANGXIU ; LEI QUJIANG ; XU JIE ; GUI GUANGCHAO ; LI XIUHAO ; LIANG BO ; LIU JI ; PAN YIPENG ; LIU JUNHAO</creator><creatorcontrib>WANG WEIJUN ; HAN ZHANGXIU ; LEI QUJIANG ; XU JIE ; GUI GUANGCHAO ; LI XIUHAO ; LIANG BO ; LIU JI ; PAN YIPENG ; LIU JUNHAO</creatorcontrib><description>The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural network model to obtain feature maps of six different layers; carrying out multi-scale feature fusion prediction by adopting a feature pyramid feature map, obtaining and generating four anchor box prediction target bounding boxes by using a K-means clustering algorithm, and predicting categories by using a cross entropy loss function; removing a redundant prediction bounding box through a non-maximum suppression algorithm; and outputting the position information and types of the workpiece surface defects. The method solves the problems of low detection efficiency and poor precision of manual detection and physical detection methods, overcomes the problem of poor adaptability of traditional machine vision defect detecti</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200714&amp;DB=EPODOC&amp;CC=CN&amp;NR=111415329A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200714&amp;DB=EPODOC&amp;CC=CN&amp;NR=111415329A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WEIJUN</creatorcontrib><creatorcontrib>HAN ZHANGXIU</creatorcontrib><creatorcontrib>LEI QUJIANG</creatorcontrib><creatorcontrib>XU JIE</creatorcontrib><creatorcontrib>GUI GUANGCHAO</creatorcontrib><creatorcontrib>LI XIUHAO</creatorcontrib><creatorcontrib>LIANG BO</creatorcontrib><creatorcontrib>LIU JI</creatorcontrib><creatorcontrib>PAN YIPENG</creatorcontrib><creatorcontrib>LIU JUNHAO</creatorcontrib><title>Workpiece surface defect detection method based on deep learning</title><description>The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural network model to obtain feature maps of six different layers; carrying out multi-scale feature fusion prediction by adopting a feature pyramid feature map, obtaining and generating four anchor box prediction target bounding boxes by using a K-means clustering algorithm, and predicting categories by using a cross entropy loss function; removing a redundant prediction bounding box through a non-maximum suppression algorithm; and outputting the position information and types of the workpiece surface defects. The method solves the problems of low detection efficiency and poor precision of manual detection and physical detection methods, overcomes the problem of poor adaptability of traditional machine vision defect detecti</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIzy_KLshMTU5VKC4tSksE0impaanJJUCqBEhl5ucp5KaWZOSnKCQlFqemKAD5KampBQo5qYlFeZl56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4AGhiXmpJvLOfoaGhiaGpsZGlozExagDEBzEk</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>WANG WEIJUN</creator><creator>HAN ZHANGXIU</creator><creator>LEI QUJIANG</creator><creator>XU JIE</creator><creator>GUI GUANGCHAO</creator><creator>LI XIUHAO</creator><creator>LIANG BO</creator><creator>LIU JI</creator><creator>PAN YIPENG</creator><creator>LIU JUNHAO</creator><scope>EVB</scope></search><sort><creationdate>20200714</creationdate><title>Workpiece surface defect detection method based on deep learning</title><author>WANG WEIJUN ; HAN ZHANGXIU ; LEI QUJIANG ; XU JIE ; GUI GUANGCHAO ; LI XIUHAO ; LIANG BO ; LIU JI ; PAN YIPENG ; LIU JUNHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111415329A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WEIJUN</creatorcontrib><creatorcontrib>HAN ZHANGXIU</creatorcontrib><creatorcontrib>LEI QUJIANG</creatorcontrib><creatorcontrib>XU JIE</creatorcontrib><creatorcontrib>GUI GUANGCHAO</creatorcontrib><creatorcontrib>LI XIUHAO</creatorcontrib><creatorcontrib>LIANG BO</creatorcontrib><creatorcontrib>LIU JI</creatorcontrib><creatorcontrib>PAN YIPENG</creatorcontrib><creatorcontrib>LIU JUNHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WEIJUN</au><au>HAN ZHANGXIU</au><au>LEI QUJIANG</au><au>XU JIE</au><au>GUI GUANGCHAO</au><au>LI XIUHAO</au><au>LIANG BO</au><au>LIU JI</au><au>PAN YIPENG</au><au>LIU JUNHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Workpiece surface defect detection method based on deep learning</title><date>2020-07-14</date><risdate>2020</risdate><abstract>The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural network model to obtain feature maps of six different layers; carrying out multi-scale feature fusion prediction by adopting a feature pyramid feature map, obtaining and generating four anchor box prediction target bounding boxes by using a K-means clustering algorithm, and predicting categories by using a cross entropy loss function; removing a redundant prediction bounding box through a non-maximum suppression algorithm; and outputting the position information and types of the workpiece surface defects. The method solves the problems of low detection efficiency and poor precision of manual detection and physical detection methods, overcomes the problem of poor adaptability of traditional machine vision defect detecti</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111415329A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Workpiece surface defect detection method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WEIJUN&rft.date=2020-07-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111415329A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true