Workpiece surface defect detection method based on deep learning
The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural netw...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG WEIJUN HAN ZHANGXIU LEI QUJIANG XU JIE GUI GUANGCHAO LI XIUHAO LIANG BO LIU JI PAN YIPENG LIU JUNHAO |
description | The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural network model to obtain feature maps of six different layers; carrying out multi-scale feature fusion prediction by adopting a feature pyramid feature map, obtaining and generating four anchor box prediction target bounding boxes by using a K-means clustering algorithm, and predicting categories by using a cross entropy loss function; removing a redundant prediction bounding box through a non-maximum suppression algorithm; and outputting the position information and types of the workpiece surface defects. The method solves the problems of low detection efficiency and poor precision of manual detection and physical detection methods, overcomes the problem of poor adaptability of traditional machine vision defect detecti |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111415329A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111415329A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111415329A3</originalsourceid><addsrcrecordid>eNrjZHAIzy_KLshMTU5VKC4tSksE0impaanJJUCqBEhl5ucp5KaWZOSnKCQlFqemKAD5KampBQo5qYlFeZl56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4AGhiXmpJvLOfoaGhiaGpsZGlozExagDEBzEk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Workpiece surface defect detection method based on deep learning</title><source>esp@cenet</source><creator>WANG WEIJUN ; HAN ZHANGXIU ; LEI QUJIANG ; XU JIE ; GUI GUANGCHAO ; LI XIUHAO ; LIANG BO ; LIU JI ; PAN YIPENG ; LIU JUNHAO</creator><creatorcontrib>WANG WEIJUN ; HAN ZHANGXIU ; LEI QUJIANG ; XU JIE ; GUI GUANGCHAO ; LI XIUHAO ; LIANG BO ; LIU JI ; PAN YIPENG ; LIU JUNHAO</creatorcontrib><description>The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural network model to obtain feature maps of six different layers; carrying out multi-scale feature fusion prediction by adopting a feature pyramid feature map, obtaining and generating four anchor box prediction target bounding boxes by using a K-means clustering algorithm, and predicting categories by using a cross entropy loss function; removing a redundant prediction bounding box through a non-maximum suppression algorithm; and outputting the position information and types of the workpiece surface defects. The method solves the problems of low detection efficiency and poor precision of manual detection and physical detection methods, overcomes the problem of poor adaptability of traditional machine vision defect detecti</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200714&DB=EPODOC&CC=CN&NR=111415329A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200714&DB=EPODOC&CC=CN&NR=111415329A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WEIJUN</creatorcontrib><creatorcontrib>HAN ZHANGXIU</creatorcontrib><creatorcontrib>LEI QUJIANG</creatorcontrib><creatorcontrib>XU JIE</creatorcontrib><creatorcontrib>GUI GUANGCHAO</creatorcontrib><creatorcontrib>LI XIUHAO</creatorcontrib><creatorcontrib>LIANG BO</creatorcontrib><creatorcontrib>LIU JI</creatorcontrib><creatorcontrib>PAN YIPENG</creatorcontrib><creatorcontrib>LIU JUNHAO</creatorcontrib><title>Workpiece surface defect detection method based on deep learning</title><description>The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural network model to obtain feature maps of six different layers; carrying out multi-scale feature fusion prediction by adopting a feature pyramid feature map, obtaining and generating four anchor box prediction target bounding boxes by using a K-means clustering algorithm, and predicting categories by using a cross entropy loss function; removing a redundant prediction bounding box through a non-maximum suppression algorithm; and outputting the position information and types of the workpiece surface defects. The method solves the problems of low detection efficiency and poor precision of manual detection and physical detection methods, overcomes the problem of poor adaptability of traditional machine vision defect detecti</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIzy_KLshMTU5VKC4tSksE0impaanJJUCqBEhl5ucp5KaWZOSnKCQlFqemKAD5KampBQo5qYlFeZl56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4AGhiXmpJvLOfoaGhiaGpsZGlozExagDEBzEk</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>WANG WEIJUN</creator><creator>HAN ZHANGXIU</creator><creator>LEI QUJIANG</creator><creator>XU JIE</creator><creator>GUI GUANGCHAO</creator><creator>LI XIUHAO</creator><creator>LIANG BO</creator><creator>LIU JI</creator><creator>PAN YIPENG</creator><creator>LIU JUNHAO</creator><scope>EVB</scope></search><sort><creationdate>20200714</creationdate><title>Workpiece surface defect detection method based on deep learning</title><author>WANG WEIJUN ; HAN ZHANGXIU ; LEI QUJIANG ; XU JIE ; GUI GUANGCHAO ; LI XIUHAO ; LIANG BO ; LIU JI ; PAN YIPENG ; LIU JUNHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111415329A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WEIJUN</creatorcontrib><creatorcontrib>HAN ZHANGXIU</creatorcontrib><creatorcontrib>LEI QUJIANG</creatorcontrib><creatorcontrib>XU JIE</creatorcontrib><creatorcontrib>GUI GUANGCHAO</creatorcontrib><creatorcontrib>LI XIUHAO</creatorcontrib><creatorcontrib>LIANG BO</creatorcontrib><creatorcontrib>LIU JI</creatorcontrib><creatorcontrib>PAN YIPENG</creatorcontrib><creatorcontrib>LIU JUNHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WEIJUN</au><au>HAN ZHANGXIU</au><au>LEI QUJIANG</au><au>XU JIE</au><au>GUI GUANGCHAO</au><au>LI XIUHAO</au><au>LIANG BO</au><au>LIU JI</au><au>PAN YIPENG</au><au>LIU JUNHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Workpiece surface defect detection method based on deep learning</title><date>2020-07-14</date><risdate>2020</risdate><abstract>The invention discloses a workpiece surface defect detection method based on deep learning. The method specifically comprises: collecting workpiece images under different backgrounds and illuminationconditions; preprocessing the acquired workpiece image; constructing a deep convolutional neural network model to obtain feature maps of six different layers; carrying out multi-scale feature fusion prediction by adopting a feature pyramid feature map, obtaining and generating four anchor box prediction target bounding boxes by using a K-means clustering algorithm, and predicting categories by using a cross entropy loss function; removing a redundant prediction bounding box through a non-maximum suppression algorithm; and outputting the position information and types of the workpiece surface defects. The method solves the problems of low detection efficiency and poor precision of manual detection and physical detection methods, overcomes the problem of poor adaptability of traditional machine vision defect detecti</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111415329A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Workpiece surface defect detection method based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WEIJUN&rft.date=2020-07-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111415329A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |