Neck lymph node image classification and recognition device and method

The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FU XIANGLING, WU JI, GAO TONG, OUYANG TIANXIONG, GUO CHENYI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FU XIANGLING
WU JI
GAO TONG
OUYANG TIANXIONG
GUO CHENYI
description The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultrasonic image and a corresponding Doppler image which are generated through the detection of the samecolor ultrasonic machine; carrying out modal alignment on the ultrasonic images and the corresponding Doppler images in each group of lymph node data graphs to obtain a bimodal sample; constructing adeep learning model, and training the deep learning model by using the multiple groups of bimodal samples; wherein the deep learning model comprises two identical residual networks, a feature dimension splicing layer and an output network; and obtaining a lymph node image to be recognized, generating a corresponding input sample, and inputting the input sample into the trained deep learning modelfor classification and rec
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111369546A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111369546A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111369546A3</originalsourceid><addsrcrecordid>eNrjZHDzS03OVsipzC3IUMjLT0lVyMxNTE9VSM5JLC7OTMtMTizJzM9TSMxLUShKTc5Pz8sE81NSyzKTU8HCuaklGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDQ2MzS1MTM0ZgYNQAV9DNt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neck lymph node image classification and recognition device and method</title><source>esp@cenet</source><creator>FU XIANGLING ; WU JI ; GAO TONG ; OUYANG TIANXIONG ; GUO CHENYI</creator><creatorcontrib>FU XIANGLING ; WU JI ; GAO TONG ; OUYANG TIANXIONG ; GUO CHENYI</creatorcontrib><description>The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultrasonic image and a corresponding Doppler image which are generated through the detection of the samecolor ultrasonic machine; carrying out modal alignment on the ultrasonic images and the corresponding Doppler images in each group of lymph node data graphs to obtain a bimodal sample; constructing adeep learning model, and training the deep learning model by using the multiple groups of bimodal samples; wherein the deep learning model comprises two identical residual networks, a feature dimension splicing layer and an output network; and obtaining a lymph node image to be recognized, generating a corresponding input sample, and inputting the input sample into the trained deep learning modelfor classification and rec</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200703&amp;DB=EPODOC&amp;CC=CN&amp;NR=111369546A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200703&amp;DB=EPODOC&amp;CC=CN&amp;NR=111369546A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FU XIANGLING</creatorcontrib><creatorcontrib>WU JI</creatorcontrib><creatorcontrib>GAO TONG</creatorcontrib><creatorcontrib>OUYANG TIANXIONG</creatorcontrib><creatorcontrib>GUO CHENYI</creatorcontrib><title>Neck lymph node image classification and recognition device and method</title><description>The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultrasonic image and a corresponding Doppler image which are generated through the detection of the samecolor ultrasonic machine; carrying out modal alignment on the ultrasonic images and the corresponding Doppler images in each group of lymph node data graphs to obtain a bimodal sample; constructing adeep learning model, and training the deep learning model by using the multiple groups of bimodal samples; wherein the deep learning model comprises two identical residual networks, a feature dimension splicing layer and an output network; and obtaining a lymph node image to be recognized, generating a corresponding input sample, and inputting the input sample into the trained deep learning modelfor classification and rec</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDzS03OVsipzC3IUMjLT0lVyMxNTE9VSM5JLC7OTMtMTizJzM9TSMxLUShKTc5Pz8sE81NSyzKTU8HCuaklGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDQ2MzS1MTM0ZgYNQAV9DNt</recordid><startdate>20200703</startdate><enddate>20200703</enddate><creator>FU XIANGLING</creator><creator>WU JI</creator><creator>GAO TONG</creator><creator>OUYANG TIANXIONG</creator><creator>GUO CHENYI</creator><scope>EVB</scope></search><sort><creationdate>20200703</creationdate><title>Neck lymph node image classification and recognition device and method</title><author>FU XIANGLING ; WU JI ; GAO TONG ; OUYANG TIANXIONG ; GUO CHENYI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111369546A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FU XIANGLING</creatorcontrib><creatorcontrib>WU JI</creatorcontrib><creatorcontrib>GAO TONG</creatorcontrib><creatorcontrib>OUYANG TIANXIONG</creatorcontrib><creatorcontrib>GUO CHENYI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FU XIANGLING</au><au>WU JI</au><au>GAO TONG</au><au>OUYANG TIANXIONG</au><au>GUO CHENYI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neck lymph node image classification and recognition device and method</title><date>2020-07-03</date><risdate>2020</risdate><abstract>The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultrasonic image and a corresponding Doppler image which are generated through the detection of the samecolor ultrasonic machine; carrying out modal alignment on the ultrasonic images and the corresponding Doppler images in each group of lymph node data graphs to obtain a bimodal sample; constructing adeep learning model, and training the deep learning model by using the multiple groups of bimodal samples; wherein the deep learning model comprises two identical residual networks, a feature dimension splicing layer and an output network; and obtaining a lymph node image to be recognized, generating a corresponding input sample, and inputting the input sample into the trained deep learning modelfor classification and rec</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111369546A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Neck lymph node image classification and recognition device and method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FU%20XIANGLING&rft.date=2020-07-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111369546A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true