Neck lymph node image classification and recognition device and method
The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultr...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FU XIANGLING WU JI GAO TONG OUYANG TIANXIONG GUO CHENYI |
description | The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultrasonic image and a corresponding Doppler image which are generated through the detection of the samecolor ultrasonic machine; carrying out modal alignment on the ultrasonic images and the corresponding Doppler images in each group of lymph node data graphs to obtain a bimodal sample; constructing adeep learning model, and training the deep learning model by using the multiple groups of bimodal samples; wherein the deep learning model comprises two identical residual networks, a feature dimension splicing layer and an output network; and obtaining a lymph node image to be recognized, generating a corresponding input sample, and inputting the input sample into the trained deep learning modelfor classification and rec |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111369546A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111369546A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111369546A3</originalsourceid><addsrcrecordid>eNrjZHDzS03OVsipzC3IUMjLT0lVyMxNTE9VSM5JLC7OTMtMTizJzM9TSMxLUShKTc5Pz8sE81NSyzKTU8HCuaklGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDQ2MzS1MTM0ZgYNQAV9DNt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neck lymph node image classification and recognition device and method</title><source>esp@cenet</source><creator>FU XIANGLING ; WU JI ; GAO TONG ; OUYANG TIANXIONG ; GUO CHENYI</creator><creatorcontrib>FU XIANGLING ; WU JI ; GAO TONG ; OUYANG TIANXIONG ; GUO CHENYI</creatorcontrib><description>The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultrasonic image and a corresponding Doppler image which are generated through the detection of the samecolor ultrasonic machine; carrying out modal alignment on the ultrasonic images and the corresponding Doppler images in each group of lymph node data graphs to obtain a bimodal sample; constructing adeep learning model, and training the deep learning model by using the multiple groups of bimodal samples; wherein the deep learning model comprises two identical residual networks, a feature dimension splicing layer and an output network; and obtaining a lymph node image to be recognized, generating a corresponding input sample, and inputting the input sample into the trained deep learning modelfor classification and rec</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200703&DB=EPODOC&CC=CN&NR=111369546A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200703&DB=EPODOC&CC=CN&NR=111369546A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FU XIANGLING</creatorcontrib><creatorcontrib>WU JI</creatorcontrib><creatorcontrib>GAO TONG</creatorcontrib><creatorcontrib>OUYANG TIANXIONG</creatorcontrib><creatorcontrib>GUO CHENYI</creatorcontrib><title>Neck lymph node image classification and recognition device and method</title><description>The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultrasonic image and a corresponding Doppler image which are generated through the detection of the samecolor ultrasonic machine; carrying out modal alignment on the ultrasonic images and the corresponding Doppler images in each group of lymph node data graphs to obtain a bimodal sample; constructing adeep learning model, and training the deep learning model by using the multiple groups of bimodal samples; wherein the deep learning model comprises two identical residual networks, a feature dimension splicing layer and an output network; and obtaining a lymph node image to be recognized, generating a corresponding input sample, and inputting the input sample into the trained deep learning modelfor classification and rec</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDzS03OVsipzC3IUMjLT0lVyMxNTE9VSM5JLC7OTMtMTizJzM9TSMxLUShKTc5Pz8sE81NSyzKTU8HCuaklGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDQ2MzS1MTM0ZgYNQAV9DNt</recordid><startdate>20200703</startdate><enddate>20200703</enddate><creator>FU XIANGLING</creator><creator>WU JI</creator><creator>GAO TONG</creator><creator>OUYANG TIANXIONG</creator><creator>GUO CHENYI</creator><scope>EVB</scope></search><sort><creationdate>20200703</creationdate><title>Neck lymph node image classification and recognition device and method</title><author>FU XIANGLING ; WU JI ; GAO TONG ; OUYANG TIANXIONG ; GUO CHENYI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111369546A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FU XIANGLING</creatorcontrib><creatorcontrib>WU JI</creatorcontrib><creatorcontrib>GAO TONG</creatorcontrib><creatorcontrib>OUYANG TIANXIONG</creatorcontrib><creatorcontrib>GUO CHENYI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FU XIANGLING</au><au>WU JI</au><au>GAO TONG</au><au>OUYANG TIANXIONG</au><au>GUO CHENYI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neck lymph node image classification and recognition device and method</title><date>2020-07-03</date><risdate>2020</risdate><abstract>The invention relates to a neck lymph node image classification and recognition device and method, and the method comprises the steps: obtaining a plurality of groups of lymph node data images with determined classification types, and enabling each group of lymph node data images to comprise an ultrasonic image and a corresponding Doppler image which are generated through the detection of the samecolor ultrasonic machine; carrying out modal alignment on the ultrasonic images and the corresponding Doppler images in each group of lymph node data graphs to obtain a bimodal sample; constructing adeep learning model, and training the deep learning model by using the multiple groups of bimodal samples; wherein the deep learning model comprises two identical residual networks, a feature dimension splicing layer and an output network; and obtaining a lymph node image to be recognized, generating a corresponding input sample, and inputting the input sample into the trained deep learning modelfor classification and rec</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111369546A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Neck lymph node image classification and recognition device and method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FU%20XIANGLING&rft.date=2020-07-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111369546A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |