Named entity recognition method and device based on multi-task learning

A named entity recognition method based on multi-task learning comprises the steps that a main task and one or more sub-tasks are generated according to an original task recognized by a named entity,the main task is consistent with the original task, and the sub-tasks are tasks assisting in achievin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BO ZHONGPU, WANG DAOGUANG, SUN JINGWEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BO ZHONGPU
WANG DAOGUANG
SUN JINGWEN
description A named entity recognition method based on multi-task learning comprises the steps that a main task and one or more sub-tasks are generated according to an original task recognized by a named entity,the main task is consistent with the original task, and the sub-tasks are tasks assisting in achieving the main task; inputting the training text into a named entity recognition network model; training the named entity recognition network model; wherein the named entity identification network model at least comprises a main task network and a sub-task network, the sub-task network is used for executing the sub-task and outputting sub-task prediction information to the main task network, and the main task network is combined with the sub-task prediction information to execute the main task andoutput a main task prediction result; and inputting a to-be-identified text into the named entity identification network model, and determining an identification result according to the output of themain task network. 一种基于多任务学
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111368545A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111368545A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111368545A3</originalsourceid><addsrcrecordid>eNrjZHD3S8xNTVFIzSvJLKlUKEpNzk_PyyzJzM9TyE0tychPUUjMS1FISS3LTE5VSEosBioFSZXmlGTqliQWZyvkpCYW5WXmpfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDQ2MzC1MTU0djYtQAAFrzM9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Named entity recognition method and device based on multi-task learning</title><source>esp@cenet</source><creator>BO ZHONGPU ; WANG DAOGUANG ; SUN JINGWEN</creator><creatorcontrib>BO ZHONGPU ; WANG DAOGUANG ; SUN JINGWEN</creatorcontrib><description>A named entity recognition method based on multi-task learning comprises the steps that a main task and one or more sub-tasks are generated according to an original task recognized by a named entity,the main task is consistent with the original task, and the sub-tasks are tasks assisting in achieving the main task; inputting the training text into a named entity recognition network model; training the named entity recognition network model; wherein the named entity identification network model at least comprises a main task network and a sub-task network, the sub-task network is used for executing the sub-task and outputting sub-task prediction information to the main task network, and the main task network is combined with the sub-task prediction information to execute the main task andoutput a main task prediction result; and inputting a to-be-identified text into the named entity identification network model, and determining an identification result according to the output of themain task network. 一种基于多任务学</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200703&amp;DB=EPODOC&amp;CC=CN&amp;NR=111368545A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200703&amp;DB=EPODOC&amp;CC=CN&amp;NR=111368545A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BO ZHONGPU</creatorcontrib><creatorcontrib>WANG DAOGUANG</creatorcontrib><creatorcontrib>SUN JINGWEN</creatorcontrib><title>Named entity recognition method and device based on multi-task learning</title><description>A named entity recognition method based on multi-task learning comprises the steps that a main task and one or more sub-tasks are generated according to an original task recognized by a named entity,the main task is consistent with the original task, and the sub-tasks are tasks assisting in achieving the main task; inputting the training text into a named entity recognition network model; training the named entity recognition network model; wherein the named entity identification network model at least comprises a main task network and a sub-task network, the sub-task network is used for executing the sub-task and outputting sub-task prediction information to the main task network, and the main task network is combined with the sub-task prediction information to execute the main task andoutput a main task prediction result; and inputting a to-be-identified text into the named entity identification network model, and determining an identification result according to the output of themain task network. 一种基于多任务学</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD3S8xNTVFIzSvJLKlUKEpNzk_PyyzJzM9TyE0tychPUUjMS1FISS3LTE5VSEosBioFSZXmlGTqliQWZyvkpCYW5WXmpfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDQ2MzC1MTU0djYtQAAFrzM9A</recordid><startdate>20200703</startdate><enddate>20200703</enddate><creator>BO ZHONGPU</creator><creator>WANG DAOGUANG</creator><creator>SUN JINGWEN</creator><scope>EVB</scope></search><sort><creationdate>20200703</creationdate><title>Named entity recognition method and device based on multi-task learning</title><author>BO ZHONGPU ; WANG DAOGUANG ; SUN JINGWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111368545A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BO ZHONGPU</creatorcontrib><creatorcontrib>WANG DAOGUANG</creatorcontrib><creatorcontrib>SUN JINGWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BO ZHONGPU</au><au>WANG DAOGUANG</au><au>SUN JINGWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Named entity recognition method and device based on multi-task learning</title><date>2020-07-03</date><risdate>2020</risdate><abstract>A named entity recognition method based on multi-task learning comprises the steps that a main task and one or more sub-tasks are generated according to an original task recognized by a named entity,the main task is consistent with the original task, and the sub-tasks are tasks assisting in achieving the main task; inputting the training text into a named entity recognition network model; training the named entity recognition network model; wherein the named entity identification network model at least comprises a main task network and a sub-task network, the sub-task network is used for executing the sub-task and outputting sub-task prediction information to the main task network, and the main task network is combined with the sub-task prediction information to execute the main task andoutput a main task prediction result; and inputting a to-be-identified text into the named entity identification network model, and determining an identification result according to the output of themain task network. 一种基于多任务学</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111368545A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Named entity recognition method and device based on multi-task learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BO%20ZHONGPU&rft.date=2020-07-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111368545A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true