Unmanned underwater vehicle autonomous decision control method based on visual depth estimation

The invention discloses an unmanned underwater vehicle autonomous decision control method based on visual depth estimation. The method comprises the following steps: extracting a video image shot by an underwater vehicle in real time, framing the video image, inputting the framed video image into a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHU PENGLI, ZHANG ZHENRUI, YAO SHUHAN, LIU YANCHENG, XU CHEN, ZHAO YOUTAO, LYU YINXIN, MA CHUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHU PENGLI
ZHANG ZHENRUI
YAO SHUHAN
LIU YANCHENG
XU CHEN
ZHAO YOUTAO
LYU YINXIN
MA CHUAN
description The invention discloses an unmanned underwater vehicle autonomous decision control method based on visual depth estimation. The method comprises the following steps: extracting a video image shot by an underwater vehicle in real time, framing the video image, inputting the framed video image into a geometric analysis depth estimation network for processing, extracting depth features of the image to obtain distance and contour feature information between the underwater vehicle and an obstacle, and synthesizing the distance and contour feature information into a depth image; and inputting the continuous multi-frame depth images into an autonomous decision control network, extracting depth features of the integrated depth images by adopting a convolutional neural network, inputting the depthfeatures as state information into a reinforcement learning network for training, and obtaining a linear velocity and an angular velocity corresponding to the underwater vehicle through continuous iterative optimization. 本发明公
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111340868A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111340868A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111340868A3</originalsourceid><addsrcrecordid>eNqNyzEKwkAQheE0FqLeYTyAYIhI2hAUKyutw7g7koXdmZCZjdd3Cw9g9eDne-tqeHJCZvKQ2dP8QaMZFhqDiwSYTViSZAVPLmgQBidss0RIZKN4eKGWb-lL0IyxuMlGILWQ0IrfVqs3RqXdbzfV_np59LcDTTKQTuiIyYb-Xtd1czq257Zr_jFfC6096Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned underwater vehicle autonomous decision control method based on visual depth estimation</title><source>esp@cenet</source><creator>ZHU PENGLI ; ZHANG ZHENRUI ; YAO SHUHAN ; LIU YANCHENG ; XU CHEN ; ZHAO YOUTAO ; LYU YINXIN ; MA CHUAN</creator><creatorcontrib>ZHU PENGLI ; ZHANG ZHENRUI ; YAO SHUHAN ; LIU YANCHENG ; XU CHEN ; ZHAO YOUTAO ; LYU YINXIN ; MA CHUAN</creatorcontrib><description>The invention discloses an unmanned underwater vehicle autonomous decision control method based on visual depth estimation. The method comprises the following steps: extracting a video image shot by an underwater vehicle in real time, framing the video image, inputting the framed video image into a geometric analysis depth estimation network for processing, extracting depth features of the image to obtain distance and contour feature information between the underwater vehicle and an obstacle, and synthesizing the distance and contour feature information into a depth image; and inputting the continuous multi-frame depth images into an autonomous decision control network, extracting depth features of the integrated depth images by adopting a convolutional neural network, inputting the depthfeatures as state information into a reinforcement learning network for training, and obtaining a linear velocity and an angular velocity corresponding to the underwater vehicle through continuous iterative optimization. 本发明公</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200626&amp;DB=EPODOC&amp;CC=CN&amp;NR=111340868A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200626&amp;DB=EPODOC&amp;CC=CN&amp;NR=111340868A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHU PENGLI</creatorcontrib><creatorcontrib>ZHANG ZHENRUI</creatorcontrib><creatorcontrib>YAO SHUHAN</creatorcontrib><creatorcontrib>LIU YANCHENG</creatorcontrib><creatorcontrib>XU CHEN</creatorcontrib><creatorcontrib>ZHAO YOUTAO</creatorcontrib><creatorcontrib>LYU YINXIN</creatorcontrib><creatorcontrib>MA CHUAN</creatorcontrib><title>Unmanned underwater vehicle autonomous decision control method based on visual depth estimation</title><description>The invention discloses an unmanned underwater vehicle autonomous decision control method based on visual depth estimation. The method comprises the following steps: extracting a video image shot by an underwater vehicle in real time, framing the video image, inputting the framed video image into a geometric analysis depth estimation network for processing, extracting depth features of the image to obtain distance and contour feature information between the underwater vehicle and an obstacle, and synthesizing the distance and contour feature information into a depth image; and inputting the continuous multi-frame depth images into an autonomous decision control network, extracting depth features of the integrated depth images by adopting a convolutional neural network, inputting the depthfeatures as state information into a reinforcement learning network for training, and obtaining a linear velocity and an angular velocity corresponding to the underwater vehicle through continuous iterative optimization. 本发明公</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAQheE0FqLeYTyAYIhI2hAUKyutw7g7koXdmZCZjdd3Cw9g9eDne-tqeHJCZvKQ2dP8QaMZFhqDiwSYTViSZAVPLmgQBidss0RIZKN4eKGWb-lL0IyxuMlGILWQ0IrfVqs3RqXdbzfV_np59LcDTTKQTuiIyYb-Xtd1czq257Zr_jFfC6096Q</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>ZHU PENGLI</creator><creator>ZHANG ZHENRUI</creator><creator>YAO SHUHAN</creator><creator>LIU YANCHENG</creator><creator>XU CHEN</creator><creator>ZHAO YOUTAO</creator><creator>LYU YINXIN</creator><creator>MA CHUAN</creator><scope>EVB</scope></search><sort><creationdate>20200626</creationdate><title>Unmanned underwater vehicle autonomous decision control method based on visual depth estimation</title><author>ZHU PENGLI ; ZHANG ZHENRUI ; YAO SHUHAN ; LIU YANCHENG ; XU CHEN ; ZHAO YOUTAO ; LYU YINXIN ; MA CHUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111340868A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHU PENGLI</creatorcontrib><creatorcontrib>ZHANG ZHENRUI</creatorcontrib><creatorcontrib>YAO SHUHAN</creatorcontrib><creatorcontrib>LIU YANCHENG</creatorcontrib><creatorcontrib>XU CHEN</creatorcontrib><creatorcontrib>ZHAO YOUTAO</creatorcontrib><creatorcontrib>LYU YINXIN</creatorcontrib><creatorcontrib>MA CHUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHU PENGLI</au><au>ZHANG ZHENRUI</au><au>YAO SHUHAN</au><au>LIU YANCHENG</au><au>XU CHEN</au><au>ZHAO YOUTAO</au><au>LYU YINXIN</au><au>MA CHUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned underwater vehicle autonomous decision control method based on visual depth estimation</title><date>2020-06-26</date><risdate>2020</risdate><abstract>The invention discloses an unmanned underwater vehicle autonomous decision control method based on visual depth estimation. The method comprises the following steps: extracting a video image shot by an underwater vehicle in real time, framing the video image, inputting the framed video image into a geometric analysis depth estimation network for processing, extracting depth features of the image to obtain distance and contour feature information between the underwater vehicle and an obstacle, and synthesizing the distance and contour feature information into a depth image; and inputting the continuous multi-frame depth images into an autonomous decision control network, extracting depth features of the integrated depth images by adopting a convolutional neural network, inputting the depthfeatures as state information into a reinforcement learning network for training, and obtaining a linear velocity and an angular velocity corresponding to the underwater vehicle through continuous iterative optimization. 本发明公</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111340868A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Unmanned underwater vehicle autonomous decision control method based on visual depth estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHU%20PENGLI&rft.date=2020-06-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111340868A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true