Tourism named entity identification method based on BBLC model

The invention discloses a tourism named entity recognition method based on a BBLC model, and the method comprises the steps: carrying out the BIO marking of statements in a corpus, and obtaining a BIOmarking set; inputting the BIO annotation set into a BERT pre-training language model, and outputtin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI PENG, XUE LEYI, CAO HAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI PENG
XUE LEYI
CAO HAN
description The invention discloses a tourism named entity recognition method based on a BBLC model, and the method comprises the steps: carrying out the BIO marking of statements in a corpus, and obtaining a BIOmarking set; inputting the BIO annotation set into a BERT pre-training language model, and outputting vector representation of each word in the statement, namely a word embedding sequence in each statement; 3, taking the word embedding sequence as the input of each time step of the bidirectional LSTM, and carrying out the further semantic coding to obtain a statement feature matrix; taking the statement feature matrix as input of a CRF model, labeling and decoding the statement x to obtain a word label sequence of the statement x, outputting a probability value that a label of the statement xis equal to y, solving an optimal path by using a dynamically planned Viterbi algorithm, and outputting a label sequence with the maximum probability. According to the method, local context information can be obtained by addi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111310471A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111310471A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111310471A3</originalsourceid><addsrcrecordid>eNrjZLALyS8tyizOVchLzE1NUUjNK8ksqVTITAEx0jKTE0sy8_MUclNLMvJTFJISi4FKgHwnJx9nhdz8lNQcHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhobGhgYm7oaEyMGgAwjC_r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Tourism named entity identification method based on BBLC model</title><source>esp@cenet</source><creator>LI PENG ; XUE LEYI ; CAO HAN</creator><creatorcontrib>LI PENG ; XUE LEYI ; CAO HAN</creatorcontrib><description>The invention discloses a tourism named entity recognition method based on a BBLC model, and the method comprises the steps: carrying out the BIO marking of statements in a corpus, and obtaining a BIOmarking set; inputting the BIO annotation set into a BERT pre-training language model, and outputting vector representation of each word in the statement, namely a word embedding sequence in each statement; 3, taking the word embedding sequence as the input of each time step of the bidirectional LSTM, and carrying out the further semantic coding to obtain a statement feature matrix; taking the statement feature matrix as input of a CRF model, labeling and decoding the statement x to obtain a word label sequence of the statement x, outputting a probability value that a label of the statement xis equal to y, solving an optimal path by using a dynamically planned Viterbi algorithm, and outputting a label sequence with the maximum probability. According to the method, local context information can be obtained by addi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200619&amp;DB=EPODOC&amp;CC=CN&amp;NR=111310471A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200619&amp;DB=EPODOC&amp;CC=CN&amp;NR=111310471A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>XUE LEYI</creatorcontrib><creatorcontrib>CAO HAN</creatorcontrib><title>Tourism named entity identification method based on BBLC model</title><description>The invention discloses a tourism named entity recognition method based on a BBLC model, and the method comprises the steps: carrying out the BIO marking of statements in a corpus, and obtaining a BIOmarking set; inputting the BIO annotation set into a BERT pre-training language model, and outputting vector representation of each word in the statement, namely a word embedding sequence in each statement; 3, taking the word embedding sequence as the input of each time step of the bidirectional LSTM, and carrying out the further semantic coding to obtain a statement feature matrix; taking the statement feature matrix as input of a CRF model, labeling and decoding the statement x to obtain a word label sequence of the statement x, outputting a probability value that a label of the statement xis equal to y, solving an optimal path by using a dynamically planned Viterbi algorithm, and outputting a label sequence with the maximum probability. According to the method, local context information can be obtained by addi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLALyS8tyizOVchLzE1NUUjNK8ksqVTITAEx0jKTE0sy8_MUclNLMvJTFJISi4FKgHwnJx9nhdz8lNQcHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhobGhgYm7oaEyMGgAwjC_r</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>LI PENG</creator><creator>XUE LEYI</creator><creator>CAO HAN</creator><scope>EVB</scope></search><sort><creationdate>20200619</creationdate><title>Tourism named entity identification method based on BBLC model</title><author>LI PENG ; XUE LEYI ; CAO HAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111310471A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>XUE LEYI</creatorcontrib><creatorcontrib>CAO HAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI PENG</au><au>XUE LEYI</au><au>CAO HAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Tourism named entity identification method based on BBLC model</title><date>2020-06-19</date><risdate>2020</risdate><abstract>The invention discloses a tourism named entity recognition method based on a BBLC model, and the method comprises the steps: carrying out the BIO marking of statements in a corpus, and obtaining a BIOmarking set; inputting the BIO annotation set into a BERT pre-training language model, and outputting vector representation of each word in the statement, namely a word embedding sequence in each statement; 3, taking the word embedding sequence as the input of each time step of the bidirectional LSTM, and carrying out the further semantic coding to obtain a statement feature matrix; taking the statement feature matrix as input of a CRF model, labeling and decoding the statement x to obtain a word label sequence of the statement x, outputting a probability value that a label of the statement xis equal to y, solving an optimal path by using a dynamically planned Viterbi algorithm, and outputting a label sequence with the maximum probability. According to the method, local context information can be obtained by addi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111310471A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Tourism named entity identification method based on BBLC model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20PENG&rft.date=2020-06-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111310471A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true