Model conversion method, apparatus and device, and computer storage medium

The invention provides a model conversion method, apparatus and device, and a computer storage medium. The method comprises the steps of obtaining a to-be-converted model; determining neural network layers contained in the to-be-converted model, and obtaining conversion results corresponding to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YU YOUPING, RUAN SHIMIN, PAN ZIHAO, XIE YONGKANG, FU JIAYI, SHI EN, WU TIAN, WU TUOBANG, LI SHUPENG, ZHAO YING, CHEN XIAOYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YU YOUPING
RUAN SHIMIN
PAN ZIHAO
XIE YONGKANG
FU JIAYI
SHI EN
WU TIAN
WU TUOBANG
LI SHUPENG
ZHAO YING
CHEN XIAOYU
description The invention provides a model conversion method, apparatus and device, and a computer storage medium. The method comprises the steps of obtaining a to-be-converted model; determining neural network layers contained in the to-be-converted model, and obtaining conversion results corresponding to the neural network layers; and combining the conversion results corresponding to the neural network layers to obtain a conversion result corresponding to the to-be-converted model. According to the method, the model conversion cost can be reduced, and the model conversion efficiency is improved. 本发明提供了一种模型转换的方法、装置、设备和计算机存储介质,所述方法包括:获取待转换模型;确定所述待转换模型中包含的神经网络层,并获取对应各神经网络层的转换结果;对所述对应各神经网络层的转换结果进行组合,得到对应所述待转换模型的转换结果。本发明能够降低模型转换的成本,提升模型转换的效率。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111291882A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111291882A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111291882A3</originalsourceid><addsrcrecordid>eNqNi70KwjAURrM4iPoO170OqUsdpSgi6OReLsmnDTS5IT99fkV8AKdzhnOW6noTi4mMhBkpOwnkUUaxDXGMnLjUTBwsWczOoPm6ER9rQaJcJPELn8W66tdq8eQpY_PjSm3Pp0d_2SHKgBzZIKAM_V1r3R5017XH_T_NGw-tNO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model conversion method, apparatus and device, and computer storage medium</title><source>esp@cenet</source><creator>YU YOUPING ; RUAN SHIMIN ; PAN ZIHAO ; XIE YONGKANG ; FU JIAYI ; SHI EN ; WU TIAN ; WU TUOBANG ; LI SHUPENG ; ZHAO YING ; CHEN XIAOYU</creator><creatorcontrib>YU YOUPING ; RUAN SHIMIN ; PAN ZIHAO ; XIE YONGKANG ; FU JIAYI ; SHI EN ; WU TIAN ; WU TUOBANG ; LI SHUPENG ; ZHAO YING ; CHEN XIAOYU</creatorcontrib><description>The invention provides a model conversion method, apparatus and device, and a computer storage medium. The method comprises the steps of obtaining a to-be-converted model; determining neural network layers contained in the to-be-converted model, and obtaining conversion results corresponding to the neural network layers; and combining the conversion results corresponding to the neural network layers to obtain a conversion result corresponding to the to-be-converted model. According to the method, the model conversion cost can be reduced, and the model conversion efficiency is improved. 本发明提供了一种模型转换的方法、装置、设备和计算机存储介质,所述方法包括:获取待转换模型;确定所述待转换模型中包含的神经网络层,并获取对应各神经网络层的转换结果;对所述对应各神经网络层的转换结果进行组合,得到对应所述待转换模型的转换结果。本发明能够降低模型转换的成本,提升模型转换的效率。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200616&amp;DB=EPODOC&amp;CC=CN&amp;NR=111291882A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200616&amp;DB=EPODOC&amp;CC=CN&amp;NR=111291882A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU YOUPING</creatorcontrib><creatorcontrib>RUAN SHIMIN</creatorcontrib><creatorcontrib>PAN ZIHAO</creatorcontrib><creatorcontrib>XIE YONGKANG</creatorcontrib><creatorcontrib>FU JIAYI</creatorcontrib><creatorcontrib>SHI EN</creatorcontrib><creatorcontrib>WU TIAN</creatorcontrib><creatorcontrib>WU TUOBANG</creatorcontrib><creatorcontrib>LI SHUPENG</creatorcontrib><creatorcontrib>ZHAO YING</creatorcontrib><creatorcontrib>CHEN XIAOYU</creatorcontrib><title>Model conversion method, apparatus and device, and computer storage medium</title><description>The invention provides a model conversion method, apparatus and device, and a computer storage medium. The method comprises the steps of obtaining a to-be-converted model; determining neural network layers contained in the to-be-converted model, and obtaining conversion results corresponding to the neural network layers; and combining the conversion results corresponding to the neural network layers to obtain a conversion result corresponding to the to-be-converted model. According to the method, the model conversion cost can be reduced, and the model conversion efficiency is improved. 本发明提供了一种模型转换的方法、装置、设备和计算机存储介质,所述方法包括:获取待转换模型;确定所述待转换模型中包含的神经网络层,并获取对应各神经网络层的转换结果;对所述对应各神经网络层的转换结果进行组合,得到对应所述待转换模型的转换结果。本发明能够降低模型转换的成本,提升模型转换的效率。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KwjAURrM4iPoO170OqUsdpSgi6OReLsmnDTS5IT99fkV8AKdzhnOW6noTi4mMhBkpOwnkUUaxDXGMnLjUTBwsWczOoPm6ER9rQaJcJPELn8W66tdq8eQpY_PjSm3Pp0d_2SHKgBzZIKAM_V1r3R5017XH_T_NGw-tNO8</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>YU YOUPING</creator><creator>RUAN SHIMIN</creator><creator>PAN ZIHAO</creator><creator>XIE YONGKANG</creator><creator>FU JIAYI</creator><creator>SHI EN</creator><creator>WU TIAN</creator><creator>WU TUOBANG</creator><creator>LI SHUPENG</creator><creator>ZHAO YING</creator><creator>CHEN XIAOYU</creator><scope>EVB</scope></search><sort><creationdate>20200616</creationdate><title>Model conversion method, apparatus and device, and computer storage medium</title><author>YU YOUPING ; RUAN SHIMIN ; PAN ZIHAO ; XIE YONGKANG ; FU JIAYI ; SHI EN ; WU TIAN ; WU TUOBANG ; LI SHUPENG ; ZHAO YING ; CHEN XIAOYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111291882A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YU YOUPING</creatorcontrib><creatorcontrib>RUAN SHIMIN</creatorcontrib><creatorcontrib>PAN ZIHAO</creatorcontrib><creatorcontrib>XIE YONGKANG</creatorcontrib><creatorcontrib>FU JIAYI</creatorcontrib><creatorcontrib>SHI EN</creatorcontrib><creatorcontrib>WU TIAN</creatorcontrib><creatorcontrib>WU TUOBANG</creatorcontrib><creatorcontrib>LI SHUPENG</creatorcontrib><creatorcontrib>ZHAO YING</creatorcontrib><creatorcontrib>CHEN XIAOYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU YOUPING</au><au>RUAN SHIMIN</au><au>PAN ZIHAO</au><au>XIE YONGKANG</au><au>FU JIAYI</au><au>SHI EN</au><au>WU TIAN</au><au>WU TUOBANG</au><au>LI SHUPENG</au><au>ZHAO YING</au><au>CHEN XIAOYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model conversion method, apparatus and device, and computer storage medium</title><date>2020-06-16</date><risdate>2020</risdate><abstract>The invention provides a model conversion method, apparatus and device, and a computer storage medium. The method comprises the steps of obtaining a to-be-converted model; determining neural network layers contained in the to-be-converted model, and obtaining conversion results corresponding to the neural network layers; and combining the conversion results corresponding to the neural network layers to obtain a conversion result corresponding to the to-be-converted model. According to the method, the model conversion cost can be reduced, and the model conversion efficiency is improved. 本发明提供了一种模型转换的方法、装置、设备和计算机存储介质,所述方法包括:获取待转换模型;确定所述待转换模型中包含的神经网络层,并获取对应各神经网络层的转换结果;对所述对应各神经网络层的转换结果进行组合,得到对应所述待转换模型的转换结果。本发明能够降低模型转换的成本,提升模型转换的效率。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111291882A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Model conversion method, apparatus and device, and computer storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20YOUPING&rft.date=2020-06-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111291882A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true