Sensor data classification method based on Stack integrated neural network
The invention discloses a sensor data classification method based on a Stack integrated neural network, and the method comprises the steps: 1) constructing a basic learner which comprises a feature extraction unit and a feature classification unit connected with the feature extraction unit, 2) takin...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YI LIN QIAN JUNHUI LIU RAN WANG MINGXUE CUI SHANSHAN TIAN FENGCHUN LIU YAQIONG ZHENG YANGTING WANG FEIFEI CHEN XI ZHAO YANG |
description | The invention discloses a sensor data classification method based on a Stack integrated neural network, and the method comprises the steps: 1) constructing a basic learner which comprises a feature extraction unit and a feature classification unit connected with the feature extraction unit, 2) taking outputs of a plurality of basic learners as inputs of meta learners, and constructing a Stacking model, and 3) simultaneously inputting the sensor data into a one-dimensional convolution layer of each feature extraction unit of each basic learner, taking the output of each basic learner as the input of a meta-learner of the Stacking model, processing the sensor data by the meta-learner, and outputting a final classification result by a softmax function layer of the meta-learner. According to the method, the advantages of the convolutional neural network and the long-term and short-term memory network for extracting the sensor data features are combined, the accuracy of sensor data classification is improved, and |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111291832A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111291832A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111291832A3</originalsourceid><addsrcrecordid>eNqNijEOwjAMALMwIOAP7gMY0i4woqoIMbCUvTKJS6OGuIqN-D4ZeADT6U63NteeknAGj4rgIoqEMTjUwAlepBN7eKCQh-K9opshJKVnRi0t0TtjLNAP53lrViNGod2PG1Odu3t72dPCA8mCjso5tDdrbX20h6Y-Nf88XzDxNTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Sensor data classification method based on Stack integrated neural network</title><source>esp@cenet</source><creator>YI LIN ; QIAN JUNHUI ; LIU RAN ; WANG MINGXUE ; CUI SHANSHAN ; TIAN FENGCHUN ; LIU YAQIONG ; ZHENG YANGTING ; WANG FEIFEI ; CHEN XI ; ZHAO YANG</creator><creatorcontrib>YI LIN ; QIAN JUNHUI ; LIU RAN ; WANG MINGXUE ; CUI SHANSHAN ; TIAN FENGCHUN ; LIU YAQIONG ; ZHENG YANGTING ; WANG FEIFEI ; CHEN XI ; ZHAO YANG</creatorcontrib><description>The invention discloses a sensor data classification method based on a Stack integrated neural network, and the method comprises the steps: 1) constructing a basic learner which comprises a feature extraction unit and a feature classification unit connected with the feature extraction unit, 2) taking outputs of a plurality of basic learners as inputs of meta learners, and constructing a Stacking model, and 3) simultaneously inputting the sensor data into a one-dimensional convolution layer of each feature extraction unit of each basic learner, taking the output of each basic learner as the input of a meta-learner of the Stacking model, processing the sensor data by the meta-learner, and outputting a final classification result by a softmax function layer of the meta-learner. According to the method, the advantages of the convolutional neural network and the long-term and short-term memory network for extracting the sensor data features are combined, the accuracy of sensor data classification is improved, and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200616&DB=EPODOC&CC=CN&NR=111291832A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200616&DB=EPODOC&CC=CN&NR=111291832A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YI LIN</creatorcontrib><creatorcontrib>QIAN JUNHUI</creatorcontrib><creatorcontrib>LIU RAN</creatorcontrib><creatorcontrib>WANG MINGXUE</creatorcontrib><creatorcontrib>CUI SHANSHAN</creatorcontrib><creatorcontrib>TIAN FENGCHUN</creatorcontrib><creatorcontrib>LIU YAQIONG</creatorcontrib><creatorcontrib>ZHENG YANGTING</creatorcontrib><creatorcontrib>WANG FEIFEI</creatorcontrib><creatorcontrib>CHEN XI</creatorcontrib><creatorcontrib>ZHAO YANG</creatorcontrib><title>Sensor data classification method based on Stack integrated neural network</title><description>The invention discloses a sensor data classification method based on a Stack integrated neural network, and the method comprises the steps: 1) constructing a basic learner which comprises a feature extraction unit and a feature classification unit connected with the feature extraction unit, 2) taking outputs of a plurality of basic learners as inputs of meta learners, and constructing a Stacking model, and 3) simultaneously inputting the sensor data into a one-dimensional convolution layer of each feature extraction unit of each basic learner, taking the output of each basic learner as the input of a meta-learner of the Stacking model, processing the sensor data by the meta-learner, and outputting a final classification result by a softmax function layer of the meta-learner. According to the method, the advantages of the convolutional neural network and the long-term and short-term memory network for extracting the sensor data features are combined, the accuracy of sensor data classification is improved, and</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEOwjAMALMwIOAP7gMY0i4woqoIMbCUvTKJS6OGuIqN-D4ZeADT6U63NteeknAGj4rgIoqEMTjUwAlepBN7eKCQh-K9opshJKVnRi0t0TtjLNAP53lrViNGod2PG1Odu3t72dPCA8mCjso5tDdrbX20h6Y-Nf88XzDxNTQ</recordid><startdate>20200616</startdate><enddate>20200616</enddate><creator>YI LIN</creator><creator>QIAN JUNHUI</creator><creator>LIU RAN</creator><creator>WANG MINGXUE</creator><creator>CUI SHANSHAN</creator><creator>TIAN FENGCHUN</creator><creator>LIU YAQIONG</creator><creator>ZHENG YANGTING</creator><creator>WANG FEIFEI</creator><creator>CHEN XI</creator><creator>ZHAO YANG</creator><scope>EVB</scope></search><sort><creationdate>20200616</creationdate><title>Sensor data classification method based on Stack integrated neural network</title><author>YI LIN ; QIAN JUNHUI ; LIU RAN ; WANG MINGXUE ; CUI SHANSHAN ; TIAN FENGCHUN ; LIU YAQIONG ; ZHENG YANGTING ; WANG FEIFEI ; CHEN XI ; ZHAO YANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111291832A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>YI LIN</creatorcontrib><creatorcontrib>QIAN JUNHUI</creatorcontrib><creatorcontrib>LIU RAN</creatorcontrib><creatorcontrib>WANG MINGXUE</creatorcontrib><creatorcontrib>CUI SHANSHAN</creatorcontrib><creatorcontrib>TIAN FENGCHUN</creatorcontrib><creatorcontrib>LIU YAQIONG</creatorcontrib><creatorcontrib>ZHENG YANGTING</creatorcontrib><creatorcontrib>WANG FEIFEI</creatorcontrib><creatorcontrib>CHEN XI</creatorcontrib><creatorcontrib>ZHAO YANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YI LIN</au><au>QIAN JUNHUI</au><au>LIU RAN</au><au>WANG MINGXUE</au><au>CUI SHANSHAN</au><au>TIAN FENGCHUN</au><au>LIU YAQIONG</au><au>ZHENG YANGTING</au><au>WANG FEIFEI</au><au>CHEN XI</au><au>ZHAO YANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Sensor data classification method based on Stack integrated neural network</title><date>2020-06-16</date><risdate>2020</risdate><abstract>The invention discloses a sensor data classification method based on a Stack integrated neural network, and the method comprises the steps: 1) constructing a basic learner which comprises a feature extraction unit and a feature classification unit connected with the feature extraction unit, 2) taking outputs of a plurality of basic learners as inputs of meta learners, and constructing a Stacking model, and 3) simultaneously inputting the sensor data into a one-dimensional convolution layer of each feature extraction unit of each basic learner, taking the output of each basic learner as the input of a meta-learner of the Stacking model, processing the sensor data by the meta-learner, and outputting a final classification result by a softmax function layer of the meta-learner. According to the method, the advantages of the convolutional neural network and the long-term and short-term memory network for extracting the sensor data features are combined, the accuracy of sensor data classification is improved, and</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111291832A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Sensor data classification method based on Stack integrated neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YI%20LIN&rft.date=2020-06-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111291832A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |