K-nearest neighbor algorithm-based meeting ship collision danger category determination method and device

The invention belongs to the field of intelligent ship navigation control, particularly relates to a K-nearest neighbor algorithm-based meeting ship collision danger category determination method anddevice, and aims to solve the problems that an existing method is complex in calculation process, lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIA YUANYUAN, LI YINGYING, WANG XIAOYUAN, JIANG YUHAN, DONG XIAOFEI, BO JIAGENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIA YUANYUAN
LI YINGYING
WANG XIAOYUAN
JIANG YUHAN
DONG XIAOFEI
BO JIAGENG
description The invention belongs to the field of intelligent ship navigation control, particularly relates to a K-nearest neighbor algorithm-based meeting ship collision danger category determination method anddevice, and aims to solve the problems that an existing method is complex in calculation process, large in data statistics when indexes are excessive and difficult in weight determination. The methodincludes: based on pre-acquired position information and motion information of a ship and a target ship, obtaining feature values of the plurality of meeting ship collision risk evaluation indexes, taking the feature values of the plurality of meeting ship collision risk evaluation indexes as to-be-classified data samples, and classifying the to-be-classified data samples through a pre-establishedcollision risk category classification model to obtain corresponding meeting ship collision risk categories; wherein the collision danger category classification model is established based on a K-nearest neighbor algorithm. Th
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111275084A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111275084A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111275084A3</originalsourceid><addsrcrecordid>eNqNyk0KwjAQhuFuXIh6h_EABesPupWiCIIr92VMPpuBZFKSIHh7K3gAV-_ieaeVXGsFJ-RCCundIyZi38ckxYX6wRmWAlBEe8pOBjLRe8kSlSxrj0SGC8b_TRYFKYhy-WpAcdESqx3hJQbzavJkn7H4dVYtz6d7e6kxxA55YANF6dpb0zTr_W512B43_zwfhldBJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>K-nearest neighbor algorithm-based meeting ship collision danger category determination method and device</title><source>esp@cenet</source><creator>XIA YUANYUAN ; LI YINGYING ; WANG XIAOYUAN ; JIANG YUHAN ; DONG XIAOFEI ; BO JIAGENG</creator><creatorcontrib>XIA YUANYUAN ; LI YINGYING ; WANG XIAOYUAN ; JIANG YUHAN ; DONG XIAOFEI ; BO JIAGENG</creatorcontrib><description>The invention belongs to the field of intelligent ship navigation control, particularly relates to a K-nearest neighbor algorithm-based meeting ship collision danger category determination method anddevice, and aims to solve the problems that an existing method is complex in calculation process, large in data statistics when indexes are excessive and difficult in weight determination. The methodincludes: based on pre-acquired position information and motion information of a ship and a target ship, obtaining feature values of the plurality of meeting ship collision risk evaluation indexes, taking the feature values of the plurality of meeting ship collision risk evaluation indexes as to-be-classified data samples, and classifying the to-be-classified data samples through a pre-establishedcollision risk category classification model to obtain corresponding meeting ship collision risk categories; wherein the collision danger category classification model is established based on a K-nearest neighbor algorithm. Th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200612&amp;DB=EPODOC&amp;CC=CN&amp;NR=111275084A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200612&amp;DB=EPODOC&amp;CC=CN&amp;NR=111275084A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIA YUANYUAN</creatorcontrib><creatorcontrib>LI YINGYING</creatorcontrib><creatorcontrib>WANG XIAOYUAN</creatorcontrib><creatorcontrib>JIANG YUHAN</creatorcontrib><creatorcontrib>DONG XIAOFEI</creatorcontrib><creatorcontrib>BO JIAGENG</creatorcontrib><title>K-nearest neighbor algorithm-based meeting ship collision danger category determination method and device</title><description>The invention belongs to the field of intelligent ship navigation control, particularly relates to a K-nearest neighbor algorithm-based meeting ship collision danger category determination method anddevice, and aims to solve the problems that an existing method is complex in calculation process, large in data statistics when indexes are excessive and difficult in weight determination. The methodincludes: based on pre-acquired position information and motion information of a ship and a target ship, obtaining feature values of the plurality of meeting ship collision risk evaluation indexes, taking the feature values of the plurality of meeting ship collision risk evaluation indexes as to-be-classified data samples, and classifying the to-be-classified data samples through a pre-establishedcollision risk category classification model to obtain corresponding meeting ship collision risk categories; wherein the collision danger category classification model is established based on a K-nearest neighbor algorithm. Th</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyk0KwjAQhuFuXIh6h_EABesPupWiCIIr92VMPpuBZFKSIHh7K3gAV-_ieaeVXGsFJ-RCCundIyZi38ckxYX6wRmWAlBEe8pOBjLRe8kSlSxrj0SGC8b_TRYFKYhy-WpAcdESqx3hJQbzavJkn7H4dVYtz6d7e6kxxA55YANF6dpb0zTr_W512B43_zwfhldBJA</recordid><startdate>20200612</startdate><enddate>20200612</enddate><creator>XIA YUANYUAN</creator><creator>LI YINGYING</creator><creator>WANG XIAOYUAN</creator><creator>JIANG YUHAN</creator><creator>DONG XIAOFEI</creator><creator>BO JIAGENG</creator><scope>EVB</scope></search><sort><creationdate>20200612</creationdate><title>K-nearest neighbor algorithm-based meeting ship collision danger category determination method and device</title><author>XIA YUANYUAN ; LI YINGYING ; WANG XIAOYUAN ; JIANG YUHAN ; DONG XIAOFEI ; BO JIAGENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111275084A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIA YUANYUAN</creatorcontrib><creatorcontrib>LI YINGYING</creatorcontrib><creatorcontrib>WANG XIAOYUAN</creatorcontrib><creatorcontrib>JIANG YUHAN</creatorcontrib><creatorcontrib>DONG XIAOFEI</creatorcontrib><creatorcontrib>BO JIAGENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIA YUANYUAN</au><au>LI YINGYING</au><au>WANG XIAOYUAN</au><au>JIANG YUHAN</au><au>DONG XIAOFEI</au><au>BO JIAGENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>K-nearest neighbor algorithm-based meeting ship collision danger category determination method and device</title><date>2020-06-12</date><risdate>2020</risdate><abstract>The invention belongs to the field of intelligent ship navigation control, particularly relates to a K-nearest neighbor algorithm-based meeting ship collision danger category determination method anddevice, and aims to solve the problems that an existing method is complex in calculation process, large in data statistics when indexes are excessive and difficult in weight determination. The methodincludes: based on pre-acquired position information and motion information of a ship and a target ship, obtaining feature values of the plurality of meeting ship collision risk evaluation indexes, taking the feature values of the plurality of meeting ship collision risk evaluation indexes as to-be-classified data samples, and classifying the to-be-classified data samples through a pre-establishedcollision risk category classification model to obtain corresponding meeting ship collision risk categories; wherein the collision danger category classification model is established based on a K-nearest neighbor algorithm. Th</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111275084A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title K-nearest neighbor algorithm-based meeting ship collision danger category determination method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIA%20YUANYUAN&rft.date=2020-06-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111275084A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true