Machine learning model training method and system for power load identification

The embodiment of the invention provides a machine learning model training method and system for power load identification. Specifically, actually measured electrical parameter data is taken as a basis; basic electrical parameter data is unified in format, trained and input into a neural network mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG LINSHAN, LUO YONGMU, XUANYUAN ZHE, LI JIA, ZOU JINGXI, CAO MIN, ZHOU NIANRONG, WANG HAO, LI BO, ZHU QUANCONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG LINSHAN
LUO YONGMU
XUANYUAN ZHE
LI JIA
ZOU JINGXI
CAO MIN
ZHOU NIANRONG
WANG HAO
LI BO
ZHU QUANCONG
description The embodiment of the invention provides a machine learning model training method and system for power load identification. Specifically, actually measured electrical parameter data is taken as a basis; basic electrical parameter data is unified in format, trained and input into a neural network model for continuous optimization; parameters of the model are continuously adjusted by verifying a data set so as to select an optimal model; meanwhile, the performance of the model is evaluated by utilizing the test data set; the optimal effect is achieved; and the model can be further applied to a power load identification system. According to the method, the model can be trained according to the input sampling data, so that the electric equipment in use can be identified according to waveform sampling data of specific voltage, current and active power; therefore, manual parameter adjustment and feature extraction are not needed, and the feature parameters required for identifying the powerload can be autonomously
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111242391A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111242391A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111242391A3</originalsourceid><addsrcrecordid>eNqNyjEKAjEQQNE0FqLeYTyARXZtLGVRbNTGfhmSiTuQnQnJgHh7Cz2A1efBX7r7FcPEQpAJq7A8YdZIGawif0k2aQSUCO3djGZIWqHoiypkxQgcSYwTBzRWWbtFwtxo8-vKbc-nx3DZUdGRWsFAQjYON-99t-_6gz_2_zwfZdU3Dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning model training method and system for power load identification</title><source>esp@cenet</source><creator>ZHANG LINSHAN ; LUO YONGMU ; XUANYUAN ZHE ; LI JIA ; ZOU JINGXI ; CAO MIN ; ZHOU NIANRONG ; WANG HAO ; LI BO ; ZHU QUANCONG</creator><creatorcontrib>ZHANG LINSHAN ; LUO YONGMU ; XUANYUAN ZHE ; LI JIA ; ZOU JINGXI ; CAO MIN ; ZHOU NIANRONG ; WANG HAO ; LI BO ; ZHU QUANCONG</creatorcontrib><description>The embodiment of the invention provides a machine learning model training method and system for power load identification. Specifically, actually measured electrical parameter data is taken as a basis; basic electrical parameter data is unified in format, trained and input into a neural network model for continuous optimization; parameters of the model are continuously adjusted by verifying a data set so as to select an optimal model; meanwhile, the performance of the model is evaluated by utilizing the test data set; the optimal effect is achieved; and the model can be further applied to a power load identification system. According to the method, the model can be trained according to the input sampling data, so that the electric equipment in use can be identified according to waveform sampling data of specific voltage, current and active power; therefore, manual parameter adjustment and feature extraction are not needed, and the feature parameters required for identifying the powerload can be autonomously</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200605&amp;DB=EPODOC&amp;CC=CN&amp;NR=111242391A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200605&amp;DB=EPODOC&amp;CC=CN&amp;NR=111242391A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG LINSHAN</creatorcontrib><creatorcontrib>LUO YONGMU</creatorcontrib><creatorcontrib>XUANYUAN ZHE</creatorcontrib><creatorcontrib>LI JIA</creatorcontrib><creatorcontrib>ZOU JINGXI</creatorcontrib><creatorcontrib>CAO MIN</creatorcontrib><creatorcontrib>ZHOU NIANRONG</creatorcontrib><creatorcontrib>WANG HAO</creatorcontrib><creatorcontrib>LI BO</creatorcontrib><creatorcontrib>ZHU QUANCONG</creatorcontrib><title>Machine learning model training method and system for power load identification</title><description>The embodiment of the invention provides a machine learning model training method and system for power load identification. Specifically, actually measured electrical parameter data is taken as a basis; basic electrical parameter data is unified in format, trained and input into a neural network model for continuous optimization; parameters of the model are continuously adjusted by verifying a data set so as to select an optimal model; meanwhile, the performance of the model is evaluated by utilizing the test data set; the optimal effect is achieved; and the model can be further applied to a power load identification system. According to the method, the model can be trained according to the input sampling data, so that the electric equipment in use can be identified according to waveform sampling data of specific voltage, current and active power; therefore, manual parameter adjustment and feature extraction are not needed, and the feature parameters required for identifying the powerload can be autonomously</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKAjEQQNE0FqLeYTyARXZtLGVRbNTGfhmSiTuQnQnJgHh7Cz2A1efBX7r7FcPEQpAJq7A8YdZIGawif0k2aQSUCO3djGZIWqHoiypkxQgcSYwTBzRWWbtFwtxo8-vKbc-nx3DZUdGRWsFAQjYON-99t-_6gz_2_zwfZdU3Dw</recordid><startdate>20200605</startdate><enddate>20200605</enddate><creator>ZHANG LINSHAN</creator><creator>LUO YONGMU</creator><creator>XUANYUAN ZHE</creator><creator>LI JIA</creator><creator>ZOU JINGXI</creator><creator>CAO MIN</creator><creator>ZHOU NIANRONG</creator><creator>WANG HAO</creator><creator>LI BO</creator><creator>ZHU QUANCONG</creator><scope>EVB</scope></search><sort><creationdate>20200605</creationdate><title>Machine learning model training method and system for power load identification</title><author>ZHANG LINSHAN ; LUO YONGMU ; XUANYUAN ZHE ; LI JIA ; ZOU JINGXI ; CAO MIN ; ZHOU NIANRONG ; WANG HAO ; LI BO ; ZHU QUANCONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111242391A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG LINSHAN</creatorcontrib><creatorcontrib>LUO YONGMU</creatorcontrib><creatorcontrib>XUANYUAN ZHE</creatorcontrib><creatorcontrib>LI JIA</creatorcontrib><creatorcontrib>ZOU JINGXI</creatorcontrib><creatorcontrib>CAO MIN</creatorcontrib><creatorcontrib>ZHOU NIANRONG</creatorcontrib><creatorcontrib>WANG HAO</creatorcontrib><creatorcontrib>LI BO</creatorcontrib><creatorcontrib>ZHU QUANCONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG LINSHAN</au><au>LUO YONGMU</au><au>XUANYUAN ZHE</au><au>LI JIA</au><au>ZOU JINGXI</au><au>CAO MIN</au><au>ZHOU NIANRONG</au><au>WANG HAO</au><au>LI BO</au><au>ZHU QUANCONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning model training method and system for power load identification</title><date>2020-06-05</date><risdate>2020</risdate><abstract>The embodiment of the invention provides a machine learning model training method and system for power load identification. Specifically, actually measured electrical parameter data is taken as a basis; basic electrical parameter data is unified in format, trained and input into a neural network model for continuous optimization; parameters of the model are continuously adjusted by verifying a data set so as to select an optimal model; meanwhile, the performance of the model is evaluated by utilizing the test data set; the optimal effect is achieved; and the model can be further applied to a power load identification system. According to the method, the model can be trained according to the input sampling data, so that the electric equipment in use can be identified according to waveform sampling data of specific voltage, current and active power; therefore, manual parameter adjustment and feature extraction are not needed, and the feature parameters required for identifying the powerload can be autonomously</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111242391A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Machine learning model training method and system for power load identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20LINSHAN&rft.date=2020-06-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111242391A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true