High-precision face key point positioning method and system based on deep learning
The invention discloses a high-precision face key point positioning method and system based on deep learning. The positioning method comprises the following steps: S1, constructing a plurality of regional key point positioning networks; S2, through the portrait area and the key point sample data cor...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HU NENG YANG JINJIANG DAI KANKAN LI YUNXI |
description | The invention discloses a high-precision face key point positioning method and system based on deep learning. The positioning method comprises the following steps: S1, constructing a plurality of regional key point positioning networks; S2, through the portrait area and the key point sample data corresponding to each area, training a corresponding area key point positioning network; S3, segmentingthe to-be-processed face image into human image regions; S4, based on the processing task type of the face image, selecting portrait areas needing to be processed, and inputting the portrait areas into the corresponding key point positioning networks to obtain key points corresponding to the processing task; and S5, integrating and outputting the key points corresponding to the processing task and the face image. According to the invention, the human face is divided into a plurality of regions for independently positioning the key points, when one or more parts are shielded, the accuracy andstability of the key point |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111209873A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111209873A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111209873A3</originalsourceid><addsrcrecordid>eNrjZAjyyEzP0C0oSk3OLM7Mz1NIS0xOVchOrVQoyM_MKwGSxZklQPHMvHSF3NSSjPwUhcS8FIXiyuKS1FyFpMTi1BQFoK6U1NQChZzUxCKQQh4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pcALQhL7Uk3tnP0NDQyMDSwtzY0ZgYNQAI5Tfq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>High-precision face key point positioning method and system based on deep learning</title><source>esp@cenet</source><creator>HU NENG ; YANG JINJIANG ; DAI KANKAN ; LI YUNXI</creator><creatorcontrib>HU NENG ; YANG JINJIANG ; DAI KANKAN ; LI YUNXI</creatorcontrib><description>The invention discloses a high-precision face key point positioning method and system based on deep learning. The positioning method comprises the following steps: S1, constructing a plurality of regional key point positioning networks; S2, through the portrait area and the key point sample data corresponding to each area, training a corresponding area key point positioning network; S3, segmentingthe to-be-processed face image into human image regions; S4, based on the processing task type of the face image, selecting portrait areas needing to be processed, and inputting the portrait areas into the corresponding key point positioning networks to obtain key points corresponding to the processing task; and S5, integrating and outputting the key points corresponding to the processing task and the face image. According to the invention, the human face is divided into a plurality of regions for independently positioning the key points, when one or more parts are shielded, the accuracy andstability of the key point</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200529&DB=EPODOC&CC=CN&NR=111209873A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200529&DB=EPODOC&CC=CN&NR=111209873A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU NENG</creatorcontrib><creatorcontrib>YANG JINJIANG</creatorcontrib><creatorcontrib>DAI KANKAN</creatorcontrib><creatorcontrib>LI YUNXI</creatorcontrib><title>High-precision face key point positioning method and system based on deep learning</title><description>The invention discloses a high-precision face key point positioning method and system based on deep learning. The positioning method comprises the following steps: S1, constructing a plurality of regional key point positioning networks; S2, through the portrait area and the key point sample data corresponding to each area, training a corresponding area key point positioning network; S3, segmentingthe to-be-processed face image into human image regions; S4, based on the processing task type of the face image, selecting portrait areas needing to be processed, and inputting the portrait areas into the corresponding key point positioning networks to obtain key points corresponding to the processing task; and S5, integrating and outputting the key points corresponding to the processing task and the face image. According to the invention, the human face is divided into a plurality of regions for independently positioning the key points, when one or more parts are shielded, the accuracy andstability of the key point</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjyyEzP0C0oSk3OLM7Mz1NIS0xOVchOrVQoyM_MKwGSxZklQPHMvHSF3NSSjPwUhcS8FIXiyuKS1FyFpMTi1BQFoK6U1NQChZzUxCKQQh4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pcALQhL7Uk3tnP0NDQyMDSwtzY0ZgYNQAI5Tfq</recordid><startdate>20200529</startdate><enddate>20200529</enddate><creator>HU NENG</creator><creator>YANG JINJIANG</creator><creator>DAI KANKAN</creator><creator>LI YUNXI</creator><scope>EVB</scope></search><sort><creationdate>20200529</creationdate><title>High-precision face key point positioning method and system based on deep learning</title><author>HU NENG ; YANG JINJIANG ; DAI KANKAN ; LI YUNXI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111209873A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU NENG</creatorcontrib><creatorcontrib>YANG JINJIANG</creatorcontrib><creatorcontrib>DAI KANKAN</creatorcontrib><creatorcontrib>LI YUNXI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU NENG</au><au>YANG JINJIANG</au><au>DAI KANKAN</au><au>LI YUNXI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>High-precision face key point positioning method and system based on deep learning</title><date>2020-05-29</date><risdate>2020</risdate><abstract>The invention discloses a high-precision face key point positioning method and system based on deep learning. The positioning method comprises the following steps: S1, constructing a plurality of regional key point positioning networks; S2, through the portrait area and the key point sample data corresponding to each area, training a corresponding area key point positioning network; S3, segmentingthe to-be-processed face image into human image regions; S4, based on the processing task type of the face image, selecting portrait areas needing to be processed, and inputting the portrait areas into the corresponding key point positioning networks to obtain key points corresponding to the processing task; and S5, integrating and outputting the key points corresponding to the processing task and the face image. According to the invention, the human face is divided into a plurality of regions for independently positioning the key points, when one or more parts are shielded, the accuracy andstability of the key point</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111209873A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | High-precision face key point positioning method and system based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20NENG&rft.date=2020-05-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111209873A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |