Battery charging and discharging prediction method and system based on big data analysis

The invention discloses a battery charging and discharging prediction method based on big data analysis. The battery charging and discharging prediction method comprises the following steps: dividingsamples in a battery big data sample library into a first sample library and a second sample library...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU LIANG, KANG CHAOGUO, LIU FUHUA, HUANG HE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU LIANG
KANG CHAOGUO
LIU FUHUA
HUANG HE
description The invention discloses a battery charging and discharging prediction method based on big data analysis. The battery charging and discharging prediction method comprises the following steps: dividingsamples in a battery big data sample library into a first sample library and a second sample library according to battery voltage fluctuation parameters of the samples; generating a first prediction model and a second prediction model; dividing battery input data into first input data and second input data according to the battery voltage fluctuation parameters of the battery; generating first prediction data and second prediction data; and superposing the first prediction data and the second prediction data along a time axis to generate battery charging and discharging prediction data. The invention further discloses a battery charging and discharging prediction system based on big data analysis. According to the battery charging and discharging prediction method and system based on big data analysis, the voltage
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111190112A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111190112A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111190112A3</originalsourceid><addsrcrecordid>eNqNijEOwjAMRbswIOAO5gBIBCZGWoGYmBjYKjc2aaQ2iWIvuT0RQsz85enrvWXzbFGVcwE7YnY-OMBAQF5-P2Umb9XHADPrGOlTSBHlGQYUJqhq8A4IFavEqYiXdbN44SS8-XLVbK-XR3fbcYo9S0LLgbXv7qbutDfmcD7-07wBlY86Cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Battery charging and discharging prediction method and system based on big data analysis</title><source>esp@cenet</source><creator>LIU LIANG ; KANG CHAOGUO ; LIU FUHUA ; HUANG HE</creator><creatorcontrib>LIU LIANG ; KANG CHAOGUO ; LIU FUHUA ; HUANG HE</creatorcontrib><description>The invention discloses a battery charging and discharging prediction method based on big data analysis. The battery charging and discharging prediction method comprises the following steps: dividingsamples in a battery big data sample library into a first sample library and a second sample library according to battery voltage fluctuation parameters of the samples; generating a first prediction model and a second prediction model; dividing battery input data into first input data and second input data according to the battery voltage fluctuation parameters of the battery; generating first prediction data and second prediction data; and superposing the first prediction data and the second prediction data along a time axis to generate battery charging and discharging prediction data. The invention further discloses a battery charging and discharging prediction system based on big data analysis. According to the battery charging and discharging prediction method and system based on big data analysis, the voltage</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200522&amp;DB=EPODOC&amp;CC=CN&amp;NR=111190112A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200522&amp;DB=EPODOC&amp;CC=CN&amp;NR=111190112A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU LIANG</creatorcontrib><creatorcontrib>KANG CHAOGUO</creatorcontrib><creatorcontrib>LIU FUHUA</creatorcontrib><creatorcontrib>HUANG HE</creatorcontrib><title>Battery charging and discharging prediction method and system based on big data analysis</title><description>The invention discloses a battery charging and discharging prediction method based on big data analysis. The battery charging and discharging prediction method comprises the following steps: dividingsamples in a battery big data sample library into a first sample library and a second sample library according to battery voltage fluctuation parameters of the samples; generating a first prediction model and a second prediction model; dividing battery input data into first input data and second input data according to the battery voltage fluctuation parameters of the battery; generating first prediction data and second prediction data; and superposing the first prediction data and the second prediction data along a time axis to generate battery charging and discharging prediction data. The invention further discloses a battery charging and discharging prediction system based on big data analysis. According to the battery charging and discharging prediction method and system based on big data analysis, the voltage</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEOwjAMRbswIOAO5gBIBCZGWoGYmBjYKjc2aaQ2iWIvuT0RQsz85enrvWXzbFGVcwE7YnY-OMBAQF5-P2Umb9XHADPrGOlTSBHlGQYUJqhq8A4IFavEqYiXdbN44SS8-XLVbK-XR3fbcYo9S0LLgbXv7qbutDfmcD7-07wBlY86Cw</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>LIU LIANG</creator><creator>KANG CHAOGUO</creator><creator>LIU FUHUA</creator><creator>HUANG HE</creator><scope>EVB</scope></search><sort><creationdate>20200522</creationdate><title>Battery charging and discharging prediction method and system based on big data analysis</title><author>LIU LIANG ; KANG CHAOGUO ; LIU FUHUA ; HUANG HE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111190112A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU LIANG</creatorcontrib><creatorcontrib>KANG CHAOGUO</creatorcontrib><creatorcontrib>LIU FUHUA</creatorcontrib><creatorcontrib>HUANG HE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU LIANG</au><au>KANG CHAOGUO</au><au>LIU FUHUA</au><au>HUANG HE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Battery charging and discharging prediction method and system based on big data analysis</title><date>2020-05-22</date><risdate>2020</risdate><abstract>The invention discloses a battery charging and discharging prediction method based on big data analysis. The battery charging and discharging prediction method comprises the following steps: dividingsamples in a battery big data sample library into a first sample library and a second sample library according to battery voltage fluctuation parameters of the samples; generating a first prediction model and a second prediction model; dividing battery input data into first input data and second input data according to the battery voltage fluctuation parameters of the battery; generating first prediction data and second prediction data; and superposing the first prediction data and the second prediction data along a time axis to generate battery charging and discharging prediction data. The invention further discloses a battery charging and discharging prediction system based on big data analysis. According to the battery charging and discharging prediction method and system based on big data analysis, the voltage</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111190112A
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Battery charging and discharging prediction method and system based on big data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20LIANG&rft.date=2020-05-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111190112A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true