New energy lithium battery surface defect detection method based on adaptive deep learning

The invention discloses a new energy lithium battery surface defect detection method based on adaptive deep learning. The method comprises the following steps: carrying out nonlinear mapping on a lithium battery surface grayscale image; transforming the decoupled irradiation component and reflection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU TIANTIAN, CHE ZHIMIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU TIANTIAN
CHE ZHIMIN
description The invention discloses a new energy lithium battery surface defect detection method based on adaptive deep learning. The method comprises the following steps: carrying out nonlinear mapping on a lithium battery surface grayscale image; transforming the decoupled irradiation component and reflection component to a frequency domain; performing filtering, inverse Fourier transform and exponential transform on the frequency domain data to obtain a reconstructed lithium battery image; based on morphological processing and background differencing, enhancing gray scale response at the defect; carrying out image segmentation and connected domain analysis and screening processing, and taking a result as a labeled image; designing an operator to simulate illumination details, and carrying out sample enhancement operation on the surface grayscale image of the lithium battery; training a deep convolutional neural network based on the enhanced sample image set and the labeled image; and achievinglithium battery surface d
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111105405A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111105405A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111105405A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMIFe0BpFRcdeXKTYnNTxtIk5BMld7eETyAf_P48Hjr4tHiTfBIw0LO8mjniZ6KGWmhPCejepCGQc8CFtjgaQKPQYuXoUm-0iqyfX1NRHJQyVs_bIuVUS5j9-Om2F-be307IIYOOUrag7u6PcrK6lxWl9M_zgcvAjr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>New energy lithium battery surface defect detection method based on adaptive deep learning</title><source>esp@cenet</source><creator>LIU TIANTIAN ; CHE ZHIMIN</creator><creatorcontrib>LIU TIANTIAN ; CHE ZHIMIN</creatorcontrib><description>The invention discloses a new energy lithium battery surface defect detection method based on adaptive deep learning. The method comprises the following steps: carrying out nonlinear mapping on a lithium battery surface grayscale image; transforming the decoupled irradiation component and reflection component to a frequency domain; performing filtering, inverse Fourier transform and exponential transform on the frequency domain data to obtain a reconstructed lithium battery image; based on morphological processing and background differencing, enhancing gray scale response at the defect; carrying out image segmentation and connected domain analysis and screening processing, and taking a result as a labeled image; designing an operator to simulate illumination details, and carrying out sample enhancement operation on the surface grayscale image of the lithium battery; training a deep convolutional neural network based on the enhanced sample image set and the labeled image; and achievinglithium battery surface d</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200505&amp;DB=EPODOC&amp;CC=CN&amp;NR=111105405A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200505&amp;DB=EPODOC&amp;CC=CN&amp;NR=111105405A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU TIANTIAN</creatorcontrib><creatorcontrib>CHE ZHIMIN</creatorcontrib><title>New energy lithium battery surface defect detection method based on adaptive deep learning</title><description>The invention discloses a new energy lithium battery surface defect detection method based on adaptive deep learning. The method comprises the following steps: carrying out nonlinear mapping on a lithium battery surface grayscale image; transforming the decoupled irradiation component and reflection component to a frequency domain; performing filtering, inverse Fourier transform and exponential transform on the frequency domain data to obtain a reconstructed lithium battery image; based on morphological processing and background differencing, enhancing gray scale response at the defect; carrying out image segmentation and connected domain analysis and screening processing, and taking a result as a labeled image; designing an operator to simulate illumination details, and carrying out sample enhancement operation on the surface grayscale image of the lithium battery; training a deep convolutional neural network based on the enhanced sample image set and the labeled image; and achievinglithium battery surface d</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMIFe0BpFRcdeXKTYnNTxtIk5BMld7eETyAf_P48Hjr4tHiTfBIw0LO8mjniZ6KGWmhPCejepCGQc8CFtjgaQKPQYuXoUm-0iqyfX1NRHJQyVs_bIuVUS5j9-Om2F-be307IIYOOUrag7u6PcrK6lxWl9M_zgcvAjr8</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>LIU TIANTIAN</creator><creator>CHE ZHIMIN</creator><scope>EVB</scope></search><sort><creationdate>20200505</creationdate><title>New energy lithium battery surface defect detection method based on adaptive deep learning</title><author>LIU TIANTIAN ; CHE ZHIMIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111105405A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU TIANTIAN</creatorcontrib><creatorcontrib>CHE ZHIMIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU TIANTIAN</au><au>CHE ZHIMIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>New energy lithium battery surface defect detection method based on adaptive deep learning</title><date>2020-05-05</date><risdate>2020</risdate><abstract>The invention discloses a new energy lithium battery surface defect detection method based on adaptive deep learning. The method comprises the following steps: carrying out nonlinear mapping on a lithium battery surface grayscale image; transforming the decoupled irradiation component and reflection component to a frequency domain; performing filtering, inverse Fourier transform and exponential transform on the frequency domain data to obtain a reconstructed lithium battery image; based on morphological processing and background differencing, enhancing gray scale response at the defect; carrying out image segmentation and connected domain analysis and screening processing, and taking a result as a labeled image; designing an operator to simulate illumination details, and carrying out sample enhancement operation on the surface grayscale image of the lithium battery; training a deep convolutional neural network based on the enhanced sample image set and the labeled image; and achievinglithium battery surface d</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111105405A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title New energy lithium battery surface defect detection method based on adaptive deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20TIANTIAN&rft.date=2020-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111105405A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true