Pathological full-slice image segmentation algorithm based on cascading idea

The invention discloses a pathological full-slice image segmentation algorithm based on a cascading idea, and the algorithm comprises two U-Net structures. A first network is trained by employing samples collected at a low resolution, an area which is easy to segment is filtered, and an approximate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIE FENGYING, ZHENG YUSHAN, JIANG ZHIGUO, SUN SHUJIAO, ZHANG HAOPENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIE FENGYING
ZHENG YUSHAN
JIANG ZHIGUO
SUN SHUJIAO
ZHANG HAOPENG
description The invention discloses a pathological full-slice image segmentation algorithm based on a cascading idea, and the algorithm comprises two U-Net structures. A first network is trained by employing samples collected at a low resolution, an area which is easy to segment is filtered, and an approximate cancer area segmentation result is obtained; and a second network optimizes the cancer area segmentation result obtained by the first network. According to the method, the digital pathological image segmentation precision is improved, and the test time is shortened. 本发明公开了一种基于级联思想的病理全切片图像分割算法,包括:两个U-Net结构,第一个网络用低分辨率下采集的样本进行训练,滤除易于分割的区域,得到大致的癌症区域分割结果;第二个网络优化第一个网络得到的癌症区域分割结果。本发明不仅提升了数字病理图像分割精度,而且缩短了测试时间。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111047606A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111047606A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111047606A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w_kAhQalzlIUBxEH93Im1_TgkhTvfH8dfACnHz7-pbve0aYqNXFAgfEt0qhwIOCMiUApZSqGxrUASqovtinDE5UifCmgBoxcEnAkXLvFiKK0-XXltufTo780NNeBdMZAhWzob977dn_o2u64--f5AK9fNdI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Pathological full-slice image segmentation algorithm based on cascading idea</title><source>esp@cenet</source><creator>XIE FENGYING ; ZHENG YUSHAN ; JIANG ZHIGUO ; SUN SHUJIAO ; ZHANG HAOPENG</creator><creatorcontrib>XIE FENGYING ; ZHENG YUSHAN ; JIANG ZHIGUO ; SUN SHUJIAO ; ZHANG HAOPENG</creatorcontrib><description>The invention discloses a pathological full-slice image segmentation algorithm based on a cascading idea, and the algorithm comprises two U-Net structures. A first network is trained by employing samples collected at a low resolution, an area which is easy to segment is filtered, and an approximate cancer area segmentation result is obtained; and a second network optimizes the cancer area segmentation result obtained by the first network. According to the method, the digital pathological image segmentation precision is improved, and the test time is shortened. 本发明公开了一种基于级联思想的病理全切片图像分割算法,包括:两个U-Net结构,第一个网络用低分辨率下采集的样本进行训练,滤除易于分割的区域,得到大致的癌症区域分割结果;第二个网络优化第一个网络得到的癌症区域分割结果。本发明不仅提升了数字病理图像分割精度,而且缩短了测试时间。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200421&amp;DB=EPODOC&amp;CC=CN&amp;NR=111047606A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200421&amp;DB=EPODOC&amp;CC=CN&amp;NR=111047606A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIE FENGYING</creatorcontrib><creatorcontrib>ZHENG YUSHAN</creatorcontrib><creatorcontrib>JIANG ZHIGUO</creatorcontrib><creatorcontrib>SUN SHUJIAO</creatorcontrib><creatorcontrib>ZHANG HAOPENG</creatorcontrib><title>Pathological full-slice image segmentation algorithm based on cascading idea</title><description>The invention discloses a pathological full-slice image segmentation algorithm based on a cascading idea, and the algorithm comprises two U-Net structures. A first network is trained by employing samples collected at a low resolution, an area which is easy to segment is filtered, and an approximate cancer area segmentation result is obtained; and a second network optimizes the cancer area segmentation result obtained by the first network. According to the method, the digital pathological image segmentation precision is improved, and the test time is shortened. 本发明公开了一种基于级联思想的病理全切片图像分割算法,包括:两个U-Net结构,第一个网络用低分辨率下采集的样本进行训练,滤除易于分割的区域,得到大致的癌症区域分割结果;第二个网络优化第一个网络得到的癌症区域分割结果。本发明不仅提升了数字病理图像分割精度,而且缩短了测试时间。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w_kAhQalzlIUBxEH93Im1_TgkhTvfH8dfACnHz7-pbve0aYqNXFAgfEt0qhwIOCMiUApZSqGxrUASqovtinDE5UifCmgBoxcEnAkXLvFiKK0-XXltufTo780NNeBdMZAhWzob977dn_o2u64--f5AK9fNdI</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>XIE FENGYING</creator><creator>ZHENG YUSHAN</creator><creator>JIANG ZHIGUO</creator><creator>SUN SHUJIAO</creator><creator>ZHANG HAOPENG</creator><scope>EVB</scope></search><sort><creationdate>20200421</creationdate><title>Pathological full-slice image segmentation algorithm based on cascading idea</title><author>XIE FENGYING ; ZHENG YUSHAN ; JIANG ZHIGUO ; SUN SHUJIAO ; ZHANG HAOPENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111047606A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIE FENGYING</creatorcontrib><creatorcontrib>ZHENG YUSHAN</creatorcontrib><creatorcontrib>JIANG ZHIGUO</creatorcontrib><creatorcontrib>SUN SHUJIAO</creatorcontrib><creatorcontrib>ZHANG HAOPENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIE FENGYING</au><au>ZHENG YUSHAN</au><au>JIANG ZHIGUO</au><au>SUN SHUJIAO</au><au>ZHANG HAOPENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Pathological full-slice image segmentation algorithm based on cascading idea</title><date>2020-04-21</date><risdate>2020</risdate><abstract>The invention discloses a pathological full-slice image segmentation algorithm based on a cascading idea, and the algorithm comprises two U-Net structures. A first network is trained by employing samples collected at a low resolution, an area which is easy to segment is filtered, and an approximate cancer area segmentation result is obtained; and a second network optimizes the cancer area segmentation result obtained by the first network. According to the method, the digital pathological image segmentation precision is improved, and the test time is shortened. 本发明公开了一种基于级联思想的病理全切片图像分割算法,包括:两个U-Net结构,第一个网络用低分辨率下采集的样本进行训练,滤除易于分割的区域,得到大致的癌症区域分割结果;第二个网络优化第一个网络得到的癌症区域分割结果。本发明不仅提升了数字病理图像分割精度,而且缩短了测试时间。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111047606A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Pathological full-slice image segmentation algorithm based on cascading idea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIE%20FENGYING&rft.date=2020-04-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111047606A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true