Elbow-shaped criterion-based coherency machine group clustering identification method

The invention provides an elbow-shaped criterion-based coherent generator group clustering identification method, which comprises the steps of reading BPA stable data to form a generator rotor swing angle difference matrix; selecting a plurality of clustering centers by adopting a maximum and minimu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU GAOYANG, WANG JILIN, SI QINGHUA, ZHANG JUNFANG, YAN YUNSONG, KANG MINGCAI, YANG ZHENG, ZHU CHUANHONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU GAOYANG
WANG JILIN
SI QINGHUA
ZHANG JUNFANG
YAN YUNSONG
KANG MINGCAI
YANG ZHENG
ZHU CHUANHONG
description The invention provides an elbow-shaped criterion-based coherent generator group clustering identification method, which comprises the steps of reading BPA stable data to form a generator rotor swing angle difference matrix; selecting a plurality of clustering centers by adopting a maximum and minimum distance method; estimating the optimal clustering number according to a GSA-based elbow criterion; and performing clustering analysis according to the optimal clustering number to obtain a plurality of coherency machine groups. According to the invention, a GSA-based elbow criterion is adopted tocarry out homology discrimination on the generator set; the optimal clustering number can be automatically estimated, the automatic judgment result is accurate and conforms to the reality, the localinfluence caused by large offset of individual points is considered, global statistics of oscillation energy is also considered, the adaptive capacity is high, meanwhile, the clustering center is selected by adopting the maxim
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111046532A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111046532A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111046532A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAHPxIOof1gcEjNXepVQ8edJzSZNts5BmQ5Ii_l4LPsDTMDCzFs_W9_yS2emIFkyigok4yF7nxdlhwmDeMGnjKCCMiecIxs95CcMIZDEUGsjo8v1gwuLYbsVq0D7j7seN2F_bR3OTGLnDHLXBgKVr7kqpw6k-V8dL9U_zATf1Oe0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Elbow-shaped criterion-based coherency machine group clustering identification method</title><source>esp@cenet</source><creator>XU GAOYANG ; WANG JILIN ; SI QINGHUA ; ZHANG JUNFANG ; YAN YUNSONG ; KANG MINGCAI ; YANG ZHENG ; ZHU CHUANHONG</creator><creatorcontrib>XU GAOYANG ; WANG JILIN ; SI QINGHUA ; ZHANG JUNFANG ; YAN YUNSONG ; KANG MINGCAI ; YANG ZHENG ; ZHU CHUANHONG</creatorcontrib><description>The invention provides an elbow-shaped criterion-based coherent generator group clustering identification method, which comprises the steps of reading BPA stable data to form a generator rotor swing angle difference matrix; selecting a plurality of clustering centers by adopting a maximum and minimum distance method; estimating the optimal clustering number according to a GSA-based elbow criterion; and performing clustering analysis according to the optimal clustering number to obtain a plurality of coherency machine groups. According to the invention, a GSA-based elbow criterion is adopted tocarry out homology discrimination on the generator set; the optimal clustering number can be automatically estimated, the automatic judgment result is accurate and conforms to the reality, the localinfluence caused by large offset of individual points is considered, global statistics of oscillation energy is also considered, the adaptive capacity is high, meanwhile, the clustering center is selected by adopting the maxim</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200421&amp;DB=EPODOC&amp;CC=CN&amp;NR=111046532A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200421&amp;DB=EPODOC&amp;CC=CN&amp;NR=111046532A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU GAOYANG</creatorcontrib><creatorcontrib>WANG JILIN</creatorcontrib><creatorcontrib>SI QINGHUA</creatorcontrib><creatorcontrib>ZHANG JUNFANG</creatorcontrib><creatorcontrib>YAN YUNSONG</creatorcontrib><creatorcontrib>KANG MINGCAI</creatorcontrib><creatorcontrib>YANG ZHENG</creatorcontrib><creatorcontrib>ZHU CHUANHONG</creatorcontrib><title>Elbow-shaped criterion-based coherency machine group clustering identification method</title><description>The invention provides an elbow-shaped criterion-based coherent generator group clustering identification method, which comprises the steps of reading BPA stable data to form a generator rotor swing angle difference matrix; selecting a plurality of clustering centers by adopting a maximum and minimum distance method; estimating the optimal clustering number according to a GSA-based elbow criterion; and performing clustering analysis according to the optimal clustering number to obtain a plurality of coherency machine groups. According to the invention, a GSA-based elbow criterion is adopted tocarry out homology discrimination on the generator set; the optimal clustering number can be automatically estimated, the automatic judgment result is accurate and conforms to the reality, the localinfluence caused by large offset of individual points is considered, global statistics of oscillation energy is also considered, the adaptive capacity is high, meanwhile, the clustering center is selected by adopting the maxim</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQAHPxIOof1gcEjNXepVQ8edJzSZNts5BmQ5Ii_l4LPsDTMDCzFs_W9_yS2emIFkyigok4yF7nxdlhwmDeMGnjKCCMiecIxs95CcMIZDEUGsjo8v1gwuLYbsVq0D7j7seN2F_bR3OTGLnDHLXBgKVr7kqpw6k-V8dL9U_zATf1Oe0</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>XU GAOYANG</creator><creator>WANG JILIN</creator><creator>SI QINGHUA</creator><creator>ZHANG JUNFANG</creator><creator>YAN YUNSONG</creator><creator>KANG MINGCAI</creator><creator>YANG ZHENG</creator><creator>ZHU CHUANHONG</creator><scope>EVB</scope></search><sort><creationdate>20200421</creationdate><title>Elbow-shaped criterion-based coherency machine group clustering identification method</title><author>XU GAOYANG ; WANG JILIN ; SI QINGHUA ; ZHANG JUNFANG ; YAN YUNSONG ; KANG MINGCAI ; YANG ZHENG ; ZHU CHUANHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111046532A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU GAOYANG</creatorcontrib><creatorcontrib>WANG JILIN</creatorcontrib><creatorcontrib>SI QINGHUA</creatorcontrib><creatorcontrib>ZHANG JUNFANG</creatorcontrib><creatorcontrib>YAN YUNSONG</creatorcontrib><creatorcontrib>KANG MINGCAI</creatorcontrib><creatorcontrib>YANG ZHENG</creatorcontrib><creatorcontrib>ZHU CHUANHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU GAOYANG</au><au>WANG JILIN</au><au>SI QINGHUA</au><au>ZHANG JUNFANG</au><au>YAN YUNSONG</au><au>KANG MINGCAI</au><au>YANG ZHENG</au><au>ZHU CHUANHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Elbow-shaped criterion-based coherency machine group clustering identification method</title><date>2020-04-21</date><risdate>2020</risdate><abstract>The invention provides an elbow-shaped criterion-based coherent generator group clustering identification method, which comprises the steps of reading BPA stable data to form a generator rotor swing angle difference matrix; selecting a plurality of clustering centers by adopting a maximum and minimum distance method; estimating the optimal clustering number according to a GSA-based elbow criterion; and performing clustering analysis according to the optimal clustering number to obtain a plurality of coherency machine groups. According to the invention, a GSA-based elbow criterion is adopted tocarry out homology discrimination on the generator set; the optimal clustering number can be automatically estimated, the automatic judgment result is accurate and conforms to the reality, the localinfluence caused by large offset of individual points is considered, global statistics of oscillation energy is also considered, the adaptive capacity is high, meanwhile, the clustering center is selected by adopting the maxim</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111046532A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Elbow-shaped criterion-based coherency machine group clustering identification method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20GAOYANG&rft.date=2020-04-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111046532A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true