Method for predicting multiple criminal names by using sequence generation network based on multilayer attention
The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately ex...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MA HAOYANG MA BAOSEN ZHU KONGFAN LI YUJUN |
description | The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately extract multiple criminal names of text contents. An original data set is transformed based on a multi-criminal-name prediction model of a multi-layer attention mechanism (nested word-level and sentence-level attention mechanisms), and then association information among criminal names is fused into the model through logical connection among criminal law criminal names. According to the method, a legal provision extractor and a legal provision text encoder are added, legal provision information isintroduced, text information irrelevant to a criminal name is filtered out from an original text through attention operation, information representation of a text corresponding to the criminal name to be predicted is enhanced |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111026869A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111026869A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111026869A3</originalsourceid><addsrcrecordid>eNqNzDEKwkAQheE0FqLeYTyAYBSClhIUG63swyR5xsXN7Lo7QXJ7E_EAVg8eH_808Rfow9V0d4F8QG0qNdJQ21k13oKqYFojbEm4RaSypy6OIOLVQSpQA0FgNU5IoG8XnlRyRE3D8a1Y7hGIVSGjmieTO9uIxW9nyfJ0vOXnFbwrED1XQ1CL_Jqm6XqT7bL9YfuP-QDJG0RF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for predicting multiple criminal names by using sequence generation network based on multilayer attention</title><source>esp@cenet</source><creator>MA HAOYANG ; MA BAOSEN ; ZHU KONGFAN ; LI YUJUN</creator><creatorcontrib>MA HAOYANG ; MA BAOSEN ; ZHU KONGFAN ; LI YUJUN</creatorcontrib><description>The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately extract multiple criminal names of text contents. An original data set is transformed based on a multi-criminal-name prediction model of a multi-layer attention mechanism (nested word-level and sentence-level attention mechanisms), and then association information among criminal names is fused into the model through logical connection among criminal law criminal names. According to the method, a legal provision extractor and a legal provision text encoder are added, legal provision information isintroduced, text information irrelevant to a criminal name is filtered out from an original text through attention operation, information representation of a text corresponding to the criminal name to be predicted is enhanced</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200417&DB=EPODOC&CC=CN&NR=111026869A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200417&DB=EPODOC&CC=CN&NR=111026869A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA HAOYANG</creatorcontrib><creatorcontrib>MA BAOSEN</creatorcontrib><creatorcontrib>ZHU KONGFAN</creatorcontrib><creatorcontrib>LI YUJUN</creatorcontrib><title>Method for predicting multiple criminal names by using sequence generation network based on multilayer attention</title><description>The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately extract multiple criminal names of text contents. An original data set is transformed based on a multi-criminal-name prediction model of a multi-layer attention mechanism (nested word-level and sentence-level attention mechanisms), and then association information among criminal names is fused into the model through logical connection among criminal law criminal names. According to the method, a legal provision extractor and a legal provision text encoder are added, legal provision information isintroduced, text information irrelevant to a criminal name is filtered out from an original text through attention operation, information representation of a text corresponding to the criminal name to be predicted is enhanced</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAQheE0FqLeYTyAYBSClhIUG63swyR5xsXN7Lo7QXJ7E_EAVg8eH_808Rfow9V0d4F8QG0qNdJQ21k13oKqYFojbEm4RaSypy6OIOLVQSpQA0FgNU5IoG8XnlRyRE3D8a1Y7hGIVSGjmieTO9uIxW9nyfJ0vOXnFbwrED1XQ1CL_Jqm6XqT7bL9YfuP-QDJG0RF</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>MA HAOYANG</creator><creator>MA BAOSEN</creator><creator>ZHU KONGFAN</creator><creator>LI YUJUN</creator><scope>EVB</scope></search><sort><creationdate>20200417</creationdate><title>Method for predicting multiple criminal names by using sequence generation network based on multilayer attention</title><author>MA HAOYANG ; MA BAOSEN ; ZHU KONGFAN ; LI YUJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111026869A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA HAOYANG</creatorcontrib><creatorcontrib>MA BAOSEN</creatorcontrib><creatorcontrib>ZHU KONGFAN</creatorcontrib><creatorcontrib>LI YUJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA HAOYANG</au><au>MA BAOSEN</au><au>ZHU KONGFAN</au><au>LI YUJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for predicting multiple criminal names by using sequence generation network based on multilayer attention</title><date>2020-04-17</date><risdate>2020</risdate><abstract>The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately extract multiple criminal names of text contents. An original data set is transformed based on a multi-criminal-name prediction model of a multi-layer attention mechanism (nested word-level and sentence-level attention mechanisms), and then association information among criminal names is fused into the model through logical connection among criminal law criminal names. According to the method, a legal provision extractor and a legal provision text encoder are added, legal provision information isintroduced, text information irrelevant to a criminal name is filtered out from an original text through attention operation, information representation of a text corresponding to the criminal name to be predicted is enhanced</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN111026869A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Method for predicting multiple criminal names by using sequence generation network based on multilayer attention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20HAOYANG&rft.date=2020-04-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111026869A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |