Method for predicting multiple criminal names by using sequence generation network based on multilayer attention

The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA HAOYANG, MA BAOSEN, ZHU KONGFAN, LI YUJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA HAOYANG
MA BAOSEN
ZHU KONGFAN
LI YUJUN
description The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately extract multiple criminal names of text contents. An original data set is transformed based on a multi-criminal-name prediction model of a multi-layer attention mechanism (nested word-level and sentence-level attention mechanisms), and then association information among criminal names is fused into the model through logical connection among criminal law criminal names. According to the method, a legal provision extractor and a legal provision text encoder are added, legal provision information isintroduced, text information irrelevant to a criminal name is filtered out from an original text through attention operation, information representation of a text corresponding to the criminal name to be predicted is enhanced
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN111026869A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN111026869A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN111026869A3</originalsourceid><addsrcrecordid>eNqNzDEKwkAQheE0FqLeYTyAYBSClhIUG63swyR5xsXN7Lo7QXJ7E_EAVg8eH_808Rfow9V0d4F8QG0qNdJQ21k13oKqYFojbEm4RaSypy6OIOLVQSpQA0FgNU5IoG8XnlRyRE3D8a1Y7hGIVSGjmieTO9uIxW9nyfJ0vOXnFbwrED1XQ1CL_Jqm6XqT7bL9YfuP-QDJG0RF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for predicting multiple criminal names by using sequence generation network based on multilayer attention</title><source>esp@cenet</source><creator>MA HAOYANG ; MA BAOSEN ; ZHU KONGFAN ; LI YUJUN</creator><creatorcontrib>MA HAOYANG ; MA BAOSEN ; ZHU KONGFAN ; LI YUJUN</creatorcontrib><description>The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately extract multiple criminal names of text contents. An original data set is transformed based on a multi-criminal-name prediction model of a multi-layer attention mechanism (nested word-level and sentence-level attention mechanisms), and then association information among criminal names is fused into the model through logical connection among criminal law criminal names. According to the method, a legal provision extractor and a legal provision text encoder are added, legal provision information isintroduced, text information irrelevant to a criminal name is filtered out from an original text through attention operation, information representation of a text corresponding to the criminal name to be predicted is enhanced</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200417&amp;DB=EPODOC&amp;CC=CN&amp;NR=111026869A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200417&amp;DB=EPODOC&amp;CC=CN&amp;NR=111026869A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA HAOYANG</creatorcontrib><creatorcontrib>MA BAOSEN</creatorcontrib><creatorcontrib>ZHU KONGFAN</creatorcontrib><creatorcontrib>LI YUJUN</creatorcontrib><title>Method for predicting multiple criminal names by using sequence generation network based on multilayer attention</title><description>The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately extract multiple criminal names of text contents. An original data set is transformed based on a multi-criminal-name prediction model of a multi-layer attention mechanism (nested word-level and sentence-level attention mechanisms), and then association information among criminal names is fused into the model through logical connection among criminal law criminal names. According to the method, a legal provision extractor and a legal provision text encoder are added, legal provision information isintroduced, text information irrelevant to a criminal name is filtered out from an original text through attention operation, information representation of a text corresponding to the criminal name to be predicted is enhanced</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAQheE0FqLeYTyAYBSClhIUG63swyR5xsXN7Lo7QXJ7E_EAVg8eH_808Rfow9V0d4F8QG0qNdJQ21k13oKqYFojbEm4RaSypy6OIOLVQSpQA0FgNU5IoG8XnlRyRE3D8a1Y7hGIVSGjmieTO9uIxW9nyfJ0vOXnFbwrED1XQ1CL_Jqm6XqT7bL9YfuP-QDJG0RF</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>MA HAOYANG</creator><creator>MA BAOSEN</creator><creator>ZHU KONGFAN</creator><creator>LI YUJUN</creator><scope>EVB</scope></search><sort><creationdate>20200417</creationdate><title>Method for predicting multiple criminal names by using sequence generation network based on multilayer attention</title><author>MA HAOYANG ; MA BAOSEN ; ZHU KONGFAN ; LI YUJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN111026869A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA HAOYANG</creatorcontrib><creatorcontrib>MA BAOSEN</creatorcontrib><creatorcontrib>ZHU KONGFAN</creatorcontrib><creatorcontrib>LI YUJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA HAOYANG</au><au>MA BAOSEN</au><au>ZHU KONGFAN</au><au>LI YUJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for predicting multiple criminal names by using sequence generation network based on multilayer attention</title><date>2020-04-17</date><risdate>2020</risdate><abstract>The invention relates to a method for predicting multiple criminal names by using a sequence generation network based on multi-layer attention, which better realizes context content dependence betweentexts on the basis of fusing a neural network and an attention mechanism so as to more accurately extract multiple criminal names of text contents. An original data set is transformed based on a multi-criminal-name prediction model of a multi-layer attention mechanism (nested word-level and sentence-level attention mechanisms), and then association information among criminal names is fused into the model through logical connection among criminal law criminal names. According to the method, a legal provision extractor and a legal provision text encoder are added, legal provision information isintroduced, text information irrelevant to a criminal name is filtered out from an original text through attention operation, information representation of a text corresponding to the criminal name to be predicted is enhanced</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN111026869A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Method for predicting multiple criminal names by using sequence generation network based on multilayer attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20HAOYANG&rft.date=2020-04-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN111026869A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true